
On the Use of Data Mining Techniques for the Clustering of
URLs Extracted from Network-based Malware Traces

Anthony Verez∗
∗Télécom SudParis, Institut Mines-Télécom, 91000 Evry, France

Tuesday 18th February, 2014

Abstract: We present the use of data min-
ing techniques to classify malware commu-
nication traces. Each trace corresponds to
a sequence of URLs that are contacted by
sandboxed malware.
We create clusters of URLs using a k-
means coarse-grained algorithm followed by
a DBSCAN fine-grained one.
A platform was developed to launch and
study clustering experiments with different
clustering parameters using a command-line
interface or a web application. For this study,
our dataset consists of 3 millions URLs re-
duced to 1,2 million unique GET URLs af-
ter statistical analysis. We found common
patterns in these URLs resulting in clusters
that can be used to produce high quality
signatures. We can also associate to clustering
quality measures to the signatures to assess
their relative accuracy.

1. Introduction

In a few decades, the Internet has become
a central marketplace where anyone with a
credit card can do business. This extraordi-
nary evolution came with many information
security problems. One of the main threat is

malware. Malware is often distributed on the
web using URLs. It uses the web to transfer
commands and information. In this section,
we define important terms of this paper and
then explain the goals and hypotheses of our
study.

1.1. Vocabulary

A URL, Uniform Resource Locator, is the
identifier of a resource in the World Wide
Web.

Familiar examples include an elec-
tronic document, an image, a source
of information with a consistent
purpose (e.g., ”today’s weather re-
port for Los Angeles”), a ser-
vice (e.g., an HTTP-to-SMS gate-
way), and a collection of other re-
sources. [1]

As shown in Figure 1, a URL consists
of several components: a scheme, a domain
name or an IP address, a port, a path, query
string and a fragment identifier. The query
string is itself divided into pairs of keys, also
called attributes, and values and fragments.
Each component of the URL has, at least in
theory, a specific purpose:
• The domain name or the IP address gives

the location of the destination server of

1

Figure 1. URL syntax

a request. The domain name is case
insensitive.

• The port is the destination port of the
web server running on this server. When
no port is specified, standard ports are
implied. HTTP uses TCP port 80 and
HTTPS TCP port 443 as standard ports.

• The path is used to specify and find the
resource requested. Although the path
supposed to be case sensitive, some web
servers such as Microsoft IIS treat the
path as case insensitive.

• The query string contains data passed
to the application running on the web
server, such as a website. It can be for
example the search query of a search
engine.

• The fragment identifier specifies a posi-
tion within the document. It can be used
for example to create a table of contents
with links.

In our dataset, we collected only URLs
using the HTTP scheme on the standard port
80 without any fragment identifier.

In this work, malware were collected by a
third party. By malware, we designate here
a malicious binary for a Windows environ-
ment. This dataset contains different types of
malware [2]: dropper, trojans, worms, virus,
ransomware, etc.

By malicious URL or URL request by a
malware, we designate an URL that appeared
in the HTTP flow capture when the binary
sample was executed in a sandbox (unrelated
traffic was filtered out). Malware can request
URLs serving malicious goals, such as down-

loading other malware, but we discovered
also URLs of legitimate websites without a
malicious purpose such as Google Analytics.

Clustering, also known as cluster analysis,
is defined in [3]:

Clustering analysis is a generic
name for a variety of mathematical
methods, numbering in hundreds,
that can be used to find out which
objects in a set are similar.

In this work, we describe clustering al-
gorithms in the data mining and machine
learning fields which create groups, called
clusters, of URLs sharing common patterns.

We decided to call experiment in this paper
a set of parameters for the algorithms we
use. Creating an experiment means that we
took a dataset, chose parameters for clus-
tering (including distance functions), typing,
visualization and quality evaluation on the
platform we developed and then launched the
computation task.

1.2. Goals

Our work aims at discovering families of
malware by grouping similar URLs and pro-
ducing high quality signatures. To do so we
rely on data mining and machine learning
algorithms for clustering. These signatures
could then be exploited for filtering or de-
tection in a mixed traffic environment, such
as an operator network.

2

1.3. Assumptions

To decide what could be interesting data
and properties to study malware similarities,
we had to make some assumptions.

Security vendors classify malware samples
they collect into families. In a family, samples
have similarities with which security vendors
try to base their signatures or anomaly defi-
nitions. For example the Microsoft Windows
Malicious Software Removal Tool protects
Windows users against 175 malware families
at the time of this writing [4]. Although Mi-
crosoft receives thousands of malware sam-
ples a day, they usually share traits with
samples of an existing family. Such binaries
are called variants. This classification allows
for tracking malware authorship, correlating
information (writing an indicator of compro-
mise for e.g.) and identifying new threats.

We made the choice to focus our study
on communication initiated or received by
malware. A typical case where communica-
tion is needed is for botnets [5] where the
C&C server send tasks to zombies and gather
information about the targets.

This paper examines URL patterns for
HTTP based URL paths and queries, we do
not consider domain names. We prove that
some malware share commons patterns for
URL paths and queries requested by mal-
ware samples. The discovery of these patterns
would be a hint at malware families or code
reuse between malware communication mod-
ules.

By taking this approach, we deliberately
do not consider URL polymorphism such as
a htaccess file used to rewrite URL paths
to random ones. Such an approach is light-
weighted in the future malicious traffic de-
tection step. This type of techniques has been
discovered in the the recent versions of the
RedKit exploit kit [6]. While such methods
are becoming increasingly common for ex-
ploit kits and domain names with domain
generation algorithms (DGA) including web

malware [7]. To the best of our knowledge,
they are not popular for paths and queries of
URLs requested by malware.

Our choice for the HTTP protocol rather
than, for example, IRC or P2P-based com-
munications is due to the prevalence of HTTP
based botnets nowadays [8]. This protocol is
difficult to filter, especially using a whitelist
rather than blacklist. A malicious behavior
can hide behind legitimate HTTP traffic gen-
erated by the victim and legitimate websites
such as Twitter can be used as C&C [9].

We focus on paths and queries of URLs
because we think that the studies of paths and
queries on one hand and domain names on the
other hand are distinct since they do not share
the same semantic, the control needed by the
attacker is not the same. Paths and queries
usually depend on the victim by including in-
formation about the victim’s system whereas
the FQDN part of an URL is often used by
the infrastructure obfuscation in the case of a
botnet where a DGA is implemented [5].

2. Data Mining and Machine learn-
ing

In this section, we give a quick introduction
to data mining and machine learning. We look
into the main concepts and applications.

2.1. Definitions and examples

Data mining means analyzing data to found
hidden information in it.

Machine learning consists of having com-
puters learning from data, not entirely on
code. For several decades, machine learn-
ing has revolutionized many fields and made
new technologies such as speech recognition,
better web search, recommendations, self-
driving cars possible. Machine learning even
helped us understand the human genome. Ma-
chine learning is now part of everybody’s life
whether we see it or not. Machine learning

3

techniques are also powerful to analyze trends
and patterns from big data. Arthur Samuel,
an American pioneer in the field of computer
gaming and artificial intelligence, defined ma-
chine learning as a “Field of study that gives
computers the ability to learn without be-
ing explicitly programmed” [10]. Tom M.
Mitchell came with a more formal definition:
“A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P , if its
performance at tasks in T , as measured by
P , improves with experience E” [11]. For
example, suppose you have an email program
watching which emails you do or do not mark
as spam. Based on that, the program learns
how to better filter out spam. T consists of
classifying emails as spam or not spam. E
is watching you label emails as spam or not
spam. P is the ratio of emails the algorithm
correctly classifies as spam or not spam.

2.2. Brief history

In 1952, Arthur Samuel developed the
first game-playing program thanks to ma-
chine learning. It was designed for checkers
and was smart enough to compete against
world champions. Machine learning was also
popular in the 1960s. In the 1970s, AI was
dominated by expert systems at the expense
of machine learning. But in the mid 1980s,
the creation and implementation of decision
trees allowed for the comeback of machine
leaning. During the same period, a lot of
improvements were made on neural networks.
The two approaches had huge implications
not only in the financial sector for loan ap-
proval, fraud detection or portfolio manage-
ment but also in the industry. In the 1990s, the
fast evolution of the Internet allowed sharing
huge volumes of data. New algorithms were
developed to make sense of it such as Sup-
port Vector Machine (SVM). In the beginning
of the 21st century, logistic regression came
back to light and allowed the development

of large scale machine learning systems. A
lot of other algorithms were also developed,
machine learning gave birth to a big amount
of algorithms that have specific properties.
They have been developed since the 1950s
and have made dramatic progresses since then
so that they are used in diverse fields and
play majors role in AI. To give an example,
almost every internet company uses machine
learning one way or another. With the big data
phenomenon machine learning has become
mainstream in the sense that a lot of computer
scientists, not especially specialized in AI,
implement them daily.

The term “Data Mining” appeared in 1989.
The same year, a new Special Interest Group
(SIG) of the Association for Computing Ma-
chinery (ACM) hosted its first international
conference [12].

2.3. Machine learning for informa-
tion security

Because the information security world re-
lies on data, machine learning seems to be
an effective tool for security analysts. Histor-
ically, the first security system to massively
rely on machine learning for production sys-
tems is spam filtering for emails. Naı̈ve Bayes
classification algorithm was the first popular
machine learning algorithm used for spam
detection. Variants and other algorithms have
improved detection ever since [13].

Internet companies have, sometimes from
their very beginning, tried to analyze
data [14]. They have made great efforts on
scaling machine learning algorithms.

Literature also studies user anomaly detec-
tion to detect attackers using a system [15].

Literature is abundant about data mining
techniques for network anomaly detection but
sometimes has limited success [16].

4

2.4. Supervised and unsupervised
learning

Machine learning algorithms are mainly
divided into two distinct learning methods:
supervised and unsupervised [17].

Supervised learning algorithms create a
function based on training data. Training data
are pairs of input entities, often represented as
vectors, and labels or values describing the
expected output. When the output function
is continuous the algorithm class is called
regression, when the function is discrete the
algorithm class is classification. The job of
a supervised learning algorithm is to learn
from training data so that it can afterwards
make a prediction for any other similar data.
Popular classification algorithms include neu-
ral networks (NN), support vector machines
(SVMs) or Naı̈ve Bayes. Linear regression
and logistic regression are examples of well
known regression algorithms.

Unsupervised learning algorithms have dif-
ferent goals. They do not require the labeled
training data to generate training data. They
usually take as input not only a dataset but
also parameter settings. Two main classes of
unsupervised learning algorithms exist: clus-
tering and decomposition. Clustering tech-
niques try to create clusters which are groups
of data points sharing common traits. When a
dataset or points properties are represented by
a vector, we may want to reduce the number
of dimensions used to filter out irrelevant data
for relevance evaluation, performances and
visualization. Dimensions are combined into
fewer ones while keeping most of the infor-
mation. Principal component analysis (PCA)
and single value decomposition (SVD) are
common examples of dimension reduction
algorithms.

2.5. Clustering algorithms

Several clustering algorithms have been
proposed [18]. They are to be used depending

on what we consider a cluster for our data and
what is the best approach to discover them.
Clustering algorithms can be classified de-
pending on their cluster models. We introduce
main families of cluster models.

Hierarchical clustering creates clusters us-
ing their distance value. They can be top-
down or bottom-up. Bottom-up (agglomera-
tive) methods consider each object as a cluster
and then create bigger clusters by merging
them until we have a single hierarchical tree
with all clusters in it. Top-bottom (divisive)
methods consider one cluster including all
objects and define a method for splitting a
cluster. It splits clusters recursively until each
object is in a singleton cluster. The precision
of the cluster, therefore divisions, are based
on distances. This family is also called con-
nectivity models. Results can be represented
as dendrograms. CURE [19] and BIRCH [20]
are hierarchical clustering algorithms.

Centroid models define “the average across
all the points in the cluster” [21]. When using
the k-means [22] algorithm, the number of
desired clusters k (which is also the number
of centroids) is specified. This algorithm finds
the k centroids and then assigns each point
to the nearest centroid. Differences between
variants are the methods for selecting these k
centroids. The default algorithm selects them
randomly and is generally run several times.
We keep the best attempt to minimize the
squared distances from the cluster.

Distribution models use probability distri-
butions and a cluster include objects that most
likely belong to the same distribution. This
model fits well sampled random data but can
have problems with noise.

In density models a cluster is an area that
have a higher density than average in the
dataset. In this model we generally have a
noise concept so that isolated objects in sparse
areas are considered as noise. DBSCAN [23]
and OPTICS [24] are examples of density-
based algorithms. DBSCAN takes as input k,
the number of minimum objects in a cluster,

5

and ε, the radius of the neighborhood of an
object.

Table 1 gives a summary of popular clus-
tering algorithms. Other models such as sub-
space models, group models or graph-based
models are not discussed in this paper.

2.6. Features and distance function

Features are attributes on objects that we
want to consider for our learning algorithms.
We may have one or several features. If we
want to study price of housing in an area
for example, features can be the number of
rooms and the surface area. One of the main
problem of machine learning is the selection
of relevant features for a dataset. Based on
these features a distance matrix, also called
similarity matrix, is often defined. It indi-
cates how similar or distant are objects of
our dataset with respect to each other. This
requires a distance function which depends
on the nature of our features.
• Binary features of an object have True or

False as values. Russell and Rao Index,
Hamming distance or Jaccard distance
are good distances for binary features.

• Quantitative features have number val-
ues. Some distance functions that can
considered are Euclidean distance, Man-
hattan distance, Chebyshev distance,
Minkowski distance or Canberra dis-
tance.

• Nominal features are features that cannot
be represented by numbers. A sentence
for example cannot be represented by
a quantitative value without loosing in-
formation. Distance functions have been
created to deal with nominal features
depending on their types, strings for ex-
ample.

2.7. Evaluation and quality

We saw that we have several algorithms,
settings and distance functions. We need to

know how to choose between them to have
the best result. We also need to evaluate hy-
potheses we make for a given dataset. The No
free lunch theorem of Wolpert [25] states that
without prior assumptions about the nature
of the learning problem, no machine learning
algorithm is better or worse to any other
(or even to random guessing). We want to
make good choices for model selection and
model assessment. Model selection describes
the performance of different hypotheses and
algorithms for a problem. Model assessment
is the results of the final algorithm and pa-
rameters on a new dataset.

Statistics are used to analyze features and
results. Usually a loss function is defined.
For regression it can be for example squared
error loss. The goal is to minimize it. Several
problems may appear related to our hypothe-
ses and training data. To illustrate them, we
consider a regression problem as an example.
We define h a linear hypothesis such that
the sum-squared error over the training data
< xi, yi >i=1...m is

∑m
i=1(yi − h(xi))

2 The
bias, also called systemic error, is h(x)−f(x).
It can be seen as the average error of h(x), a
high bias means low sensitivity. The variance
represents how different h(x) is depending on
the training data, a high variance means low
precision. An error rate can be decomposed as
follows: Expected prediction error = Variance
+ Bias2 + Noise2. Overfitting occurs when
hypotheses are too close to training data and
do not provide a good generalization so that
the result differs a lot with real data. High
variance results in overfitting, results may be
better with more training examples and by
trying a smaller set of features. Underfitting
is the result of high bias, a solution could be
to try a larger set of features.

For unsupervised clustering results evalua-
tion, we have two approaches: internal evalu-
ation and external evaluation. External evalu-
ation requires labeled data known as ground
truth whereas internal evaluation does not. It
is based on internal properties of produced

6

Table 1. Computational complexity of Clustering Algorithms

Algorithm Complexity Setting parameters Notes
K-means O(NKd) k: number of clusters

seed: random seed to initialize centroids
Hierarchical
Clustering

O(N2) cut function Cut needs to be defined

BIRCH O(N) Distance threshold Identifies only convex or spherical clusters
of uniform size

Distance function
Maximum node entries

CURE O(N2log(N)) k: number of clusters
DBSCAN O(Nlog(N)) k: minimum number of point in a cluster Can provide clusters of different sizes,

noise filtering
ε: radius around each object

clusters. Internal evaluation usually consider
a good clustering when a cluster has high
similarity between its members and low simi-
larity with other clusters. To use these indexes
we have to make the claim that some sort of
structure exists in the dataset. Furthermore,
these indexes are tied to the properties of
the clustering model used. Without a ground
truth, it is difficult to prove that we have
discovered all or sometimes even some hid-
den patterns in data. However, it is often
impossible to have a ground truth for a ma-
chine learning problem. The best evaluation
method depends on what is a good cluster
with respect to what we consider as a cluster
for a given dataset.

Some internal evaluation methods:

• The Davies-Buildin index [27] computes
for a cluster the mean distance between
member points and the centroid.

• The Dunn index [28] can be used to
identify dense and well-separated clus-
ters. The Dunn index is the quotient of
the minimal inter-cluster distance divide
by the maximum intra-cluster distance.

• When ordering the similarity matrix by
objects that belong to the same cluster,
we can visually see if objects in the
same cluster are close to each others, see
Figure 2 and Figure 3.

Some external evaluation methods:
• The Rand index [29] describes a measure

of the percentage of correct decisions
made by the clustering algorithms. It
takes as input the number of true pos-
itives, true negatives, false positives and
false negatives.

• The Jaccard index [30] gives the simi-
larity between two datasets. The Jaccard
index is the number of unique elements
that are in both datasets divided the total
number of unique elements.

• Adjusted mutual information [31] can be
used with the ground-truth and the result-
ing clustering to measure their mutual
dependence.

3. Related work

Rafique et al. created FIRMA [32] which
takes a network capture as input and gener-
ates family clusters of malware and network
signatures. Contrary to our algorithm, FIRMA
needs full benign traffic captures, which are
more difficult to obtain due to privacy is-
sues. They base their analysis not only on
URLs or even HTTP but extract features for
HTTP, SMTP, IRC, UDP and TCP protocols.
Regarding URLs, they only consider keys
in the query string with the Jaccard index

7

Figure 2. Ordered similarity matrix when DBSCAN is used on random data [26]

Figure 3. Ordered similarity matrix when DBSCAN fits well the dataset [26]

(see Section 2.6). Although they have good
results with the malicia dataset [33], their
signatures are valid only for a short time.
They perform two steps of clustering, the
first is based on protocols based features
extracted from network captures, then they
generate signatures which are merged later.
They use a second clustering algorithm on the
resulting signatures. To apply these signatures
IDS have to support many protocols and have
good performances for a lot of fields. Some
signature generations are not automated. Due
to the nature of their dataset, they have access
to the true malware families, the ground truth,

to evaluate their work. Therefore they use F-
measure for performance evaluation on their
dataset. A ground truth is not easy to find
and for malware family the ground truth often
depends on AV vendors research.

In [34] Le et al. study with PhishDef phish-
ing URLs that are used to spread malware or
steal sensitive information, so before malware
are executed on a victim’s computer. They
observed a lot of obfuscation but on the
domain name only and they also have to con-
sider noise. Their work uses supervised online
clustering and aims at client-side deployment.
They prove that adding external features (such

8

as WHOIS or Team Cymru information) to
lexical features (in our work we only rely on
the latter) does not provide more accuracy for
classification and give more than 95% overall
accuracy on their datasets. Their features in-
clude the domain name of the URL which we
do not select because we do not believe that
they have significant correlation with malware
families. However finding malware families is
not the goal of Le. et al. in their work.

Jacob et al. [35] conducted their analysis
on botnets communication only on host-based
features using system calls.

In [36] Perdisci et al. analyze HTTP traces
of malware, not just URL paths. They take
features by separating malware from each
other and consider for example the number
of GET and POST requests by malware. They
consider data sent by POST request, collect-
ing those in real world data can be a privacy
issue. This can split malware families into
different clusters when malware authors add
features and does not take noise into account.
Because they use hierarchical clustering and
three clustering steps, they need to define
three cut functions and thresholds. Noise may
affect their algorithm.

To the best of our knowledge, no similar
study includes a typing step before clustering
which is one of our contributions and allows
to consider most of the dynamic values such
as MD5, timestamps, etc. to be considered as
token and not consider their length. As far as
we know we are also the first to consider only
paths and to use DBSCAN to create clusters
of them.

4. Our dataset

Our original dataset consists of over 3 mil-
lion URLs. The collection was done by a third
party security vendor on malware binaries
for Windows environments. They include all
type of malware: rootkits, droppers, trojans,
etc. The dataset is proprietary. Figure 4 il-
lustrates the collection process. Malware was

executed in a sandbox where network com-
munications were captured and noise such
as legitimate software updates were filtered
out. This process is not a contribution of our
work and therefore is not detailed here. Once
we have all the network captures, we can
extract URLs. We generate a dataset file with
one path per line. After removing duplicates,
we have a dataset of 2 million URLs. After
removing domain names and selecting only
GET requests, we end up with a dataset of
1.2 million URLs.

5. Preliminary statistical analysis of
the dataset

A statistical analysis is often performed to
know what features to select for a dataset.
It also gives an insight about the dataset so
that we can know what kind of shapes the
clustering algorithm has to find. This infor-
mation is essential to select the best clustering
algorithm for this dataset.

In current literature, the common features
of an URL can be divided between the do-
main name, the path and the query string
of the URL. For the path, the most popular
features are:
• Length of the path
• Number of subpaths
• Lexical features, usually stored as a “col-

lection of words” which is a simple list
of keywords such as “images”, “img”,
“admin”, “paris”, etc.

• File extension type. E.g.: html, jpeg, png,
exe, etc.

For the query string (key-value pairs), the
following features can be used:
• Length of the query string
• Number of keys
• Lexical features, usually stored as a “col-

lection of words” which is a simple
list of keywords such as “id”, “name”,
“page”, etc.

• Value data types such as real, integer,
MD5, SHA1, etc.

9

Figure 4. Malware collection, credits to Everaldo Coelho and YellowIcon, License LGPL

5.1. Verbs

Table 2. HTTP/1.1 verbs

Name Description
GET Retrieve information. In practice, GET is

most used verb. GET requests have no
browser-supplied payloads.

POST Submit information to the server. A pay-
load is usually attached which is not vis-
ible in the URL

HEAD Identical to GET but return only the HTTP
headers. Rarely used.

OPTIONS Return supported methods for a given
URL.

PUT Upload files to the server. Not imple-
mented by browsers which often use
POST instead.

DELETE Delete a specified resource. Almost never
used.

TRACE Return information about all the proxy
hops encountered in processing a request,
like a “traceroute”. Often disabled by
server administrators for security reason.

CONNECT Establish non-HTTP connections using
HTTP proxies.

In HTTP/1.1 provides several request types
called verbs. Table 2 gives an overview of
HTTP/1.1 verbs [37].

As shown in Figure 5, our initial dataset
consisted of approximately 2/3 of GET and
1/3 of POST requests. Data in POST requests
is not in the URL but in HTTP headers. An-

Figure 5. HTTP request by verb for our full
initial dataset

alyzing HTTP headers rather than just URL
paths and query strings poses more privacy
issues because POST data is more likely to
include credentials for non-encrypted com-
munication for example. For these reasons,
we decided to select only GET requests for
our study. From now on in this paper we
analyze only GET requests.

5.2. Length

One of the easiest way to discriminate
URLs is to look at their lengthwise distribu-
tion.

Some studies [36] have used domain
name’s length as a feature for coarse-grained
clustering of URLs requested by malware.
In Figure 6 is the lengthwise distribution of

10

Figure 6. Frequency distribution - Length
of domain name of the URL in the dataset.
It can be observed that the graph has a
long tail distribution.

domain names in our dataset. We can ob-
serve that most URLs have domain names not
exceeding 50 characters. Malicious domain
names tend to be longer than most legitimate
domain names [38].

As shown in Figure 7 malware use ob-
fuscation techniques. They are efficient to
evade URL blacklists or pattern signatures.
We designate by query fields a unique pair
of key/value in the query string. We see that
after 100 characters in the domain name, very
few URLs have a query string.

Figure 8. Frequency distribution of the
sum of the path and query string lengths

We have plotted the frequency distribution
of the sum of the path and query string
lengths for all URLs in the database in Fig-
ure 8. As we can see, for almost all URLs
this sum is less than 100 characters. For

65% URLs, this sum does not exceed 32
characters. A MD5 hash has a length of 32
characters and none of the URLs having the
sum of their path and query string length up
to 32 characters had a MD5. A SHA1 hash
has a length of 40 characters and a base64
at least 76 characters. So, at least 65% URLs
do not include any hash or serialization using
these algorithms. 15% of the URLs have a
length sum between 40 and 80 characters. We
saw that URLs whose length sum is greater
than 120 characters usually include a HTTP
redirection or a base64 value.

Figure 9. Frequency distribution - Length
of query strings of the URLs in the
dataset.

We decided to look inside the length of
query strings in Figure 9. We can see that
the graph has a long tail distribution. Most
of the query strings have short to medium
query string length. Such kind of distribution
raises the possibility of dividing dataset on
the basis of length. In the long tail we mostly
have URLs that include MD5, SHA1, URLs
or base64-encoded data in their query string.

5.3. Subpaths and query fields

The distribution of path length with respect
to the number of subpaths in our dataset is
given in Figure 10. The number of subpaths
does not seem related to the path length since
both short path length and long path length
URLs tend to have up to 10 subpaths. Thus

11

Figure 7. Domain name obfuscation example in the dataset

Figure 10. Path length vs number of sub-
paths

we can infer that the number of subpaths and
the path length are independent features.

Figure 11 shows the distribution of the
query string length with respect to the number
of query fields (unique pairs of key/value in
the query string) in our dataset. While most
query strings have less than 400 characters,
we do not have a strong relation between
the query string length and the number of
query fields. The maximum length of a URL

Figure 11. Length of the query string vs
number of query fields

depends on the client and server combination
but is usually around 2,000 characters.

5.4. File extensions

We plotted in Figure 12 the distribution of
extension types for URLs having the sum of
their path length and query string length less
than 40 characters. While we would not have
a lot of different values if we chose to use file
extensions as a feature, we have an interesting

12

Figure 12. Distribution of extension types
for URLs having the sum of their path
length and query string length less than
40 characters

distribution since we have only a few outliers
and many significant percentages for different
extensions. The file extension in a URL is not
always associated with the corresponding file
format because of obfuscation and filtering
evasion techniques.

5.5. Bag of words

Figure 13. A pictorial representation of
the bag of words of keys in query strings
of our dataset. Most occurring keys are
larger than least occurring ones. Some of
the most occurring words are from benign
URLs used by malware in our dataset.

A bag of words is a set of unique words
associated with their occurrence in a given
text. It can be seen as a way to store word
frequency. We represented in Figure 13 the

bag of words of keys in query strings of our
dataset.

Because the query strings is often accessi-
ble by a key-value dictionary for web devel-
opers, the key should be in most cases easily
recognizable and understandable. This way,
we can filter out keys associated with non-
malicious popular websites:
• Several URLs contain terms such as “id”,

“ver” or “version”. These keys occur
frequently in both benign and malicious
traffic.

• Keys containing the “utm” prefix such as
“utmhid”, “utmwv” or “utmac” are asso-
ciated with the popular Google analytics
service.

We can also see in Figure 13 the keys
“SAIRND”, “browser” and “locale”. One of
the URL in our dataset containing these keys
is:

uci.secure-softwaremanager.com/
?SAIRND=300125&icname=GPLCPLite43
&icversion=15623
&tid=4/1/2011%204:49:10%20AM&os=6.1
&locale=fr-FR&browser=FIREFOX.4.0

This URL is generated by Troj/Mdrop-
DGS. The keys “browser” and Locale are too
generic and can be found in various URLs.
However, we can easily identity SAIRND as
one of the markers of Troj/Mdrop-DGS.

Figure 14. By tracking key “780f5” in our
dataset we found traces of Sus/Sality-A.

We also looked into some keys having very

13

low occurrences in the bag of the words but
were suspicious in nature. As we saw earlier,
in a URL a key should be easily recog-
nizable and understandable. Therefore, keys
not fulfilling these criteria raise suspicion.
For example, by tracking key “780f5” in our
dataset we found traces of Sus/Sality-A [39],
see Figure 14.

Figure 15. Domain name is not a good
criteria for clustering a malware.

Figure 15 also proves our hypothesis that
the domain name is not a good criteria for
clustering since a malware can easily change
its host but its path and query strings signature
remains similar. Here, “logos*.gif should be
part of the signature of the malware.

This preliminary analysis on the URLs
motivates us to try to classify URLs based
on some patterns exhibited in path and query
string.

6. Methodology and implementation

We propose a novel architecture to solve
our problem (Figure 16). Because our dataset
of 1.3 million URLs is very large, we de-
cided to perform two successive clustering
steps instead of one. We first have a coarse-
grained clustering and we perform a fine-
grained clustering on coarse-grained clusters.
Between the two clustering steps, we replace
values in query strings by their type because
of polymorphism, values specific to a victim
or binary in order to have clusters for which
we can easily create signatures. After the final
clustering step, we have fine-grained clusters
with typed values. We can then visualize
our clusters in two or three dimensions and

evaluate their quality. Finally we generate a
signature for each fine-grained cluster.

We integrated almost all our tools in a web
interface where with a few clicks we can set
parameters for the different steps and analyze
results.

In this section we introduce our implemen-
tation and algorithms.

6.1. Coarse-grained clustering

Figure 17. Features used for k-means
clustering are based on letters frequency.
We separate the path, keys and values.

The objective reason of this clustering step
is to improve performance by creating coarse-
grained clusters which should be smaller in-
put files for the fine-grained clustering al-
gorithm. So we need to find features and a
clustering algorithm that are fast to compute,
create clusters as equal in size as possible.
This step should not deteriorate results too
much.

To meet these requirements, we initially
tried statistical features on our URLs because
these features are often used in the litera-
ture [36]. They included: number of subpath
fields, total length of subpaths, number of
query fields, length of query string, etc.

We selected k-means [22] as clustering
algorithm for this step because of its low
complexity and because we can specify the
number of clusters we want, see Table 1. Fur-
thermore, we needed an unsupervised clus-
tering algorithm such as k-means because
our goal is to completely automate malware
families discovery.

14

Figure 16. Proposed architecture with two steps clustering and typing after the first
clustering algorithm

Figure 18. K-means clusters distribution

However our dataset tends to include a lot
of short URLs. Because of this, nearly 70%
of our URLs were in the same cluster. Having
such a majority of URLs in one cluster does
not satisfy our requirements so we decided
to try other features. We also saw URLs in
the same cluster while not having a single
common character but only the same length
and number of subpaths.

Because of this phenomenon, we needed
features that are more string-based. We se-
lected the frequency of a character in a URL.
The HTTP standard specifies that characters

in a URL have their ASCII value lower than
127. Therefore, we divided our feature vec-
tors into three parts : path, keys and values.
Each one of this part is a vector of 128
dimensions (value 0 is valid). The feature
vector is the concatenation of these three
vectors so that its size is 384.

For example in the path
/docs/latest/widgets, the occurrence frequency
of the character: o is 1, e is 2, / is 3 and z is
0.

Figure 18 gives the size of coarse-grained
clusters with respect to the value of k which
is the number of clusters. We see that after
k = 30 we add very small clusters which
is not desirable because it does not tend to
an equally distribution of size of the clusters.
Having too many very small clusters would
also require us to add a merging step in our
architecture. Empirically, we verified that the
clusters are not worse with k = 30 than with
higher values. Because of these reasons, we
chose k = 30 for the k-means algorithm. We
implemented features extraction for coarse-
grained clustering and k-means with python

15

using the mlpy library [40].

6.2. Typing

After the coarse-grained clustering step, we
have a typing step. We replace the values
in query strings by their types by parsing
them. Table 3 shows that we discovered 13
important types in the dataset.

Because of its different subtypes, base64
is particularly hard to parse. Perfect URL
parsing is impossible because browsers have
specific support for some special characters.
URL encoding is also hard to implement in a
regular expression [37]. Table 4 provides an
example of our typing for a few URLs. As we
can see, duplicates are generated by parsing
and need to be removed.

We decided to type values in query strings
because more than 70% of them in our dataset
match with a type. Because changing the
type of a value demands far more effort than
changing just the value, we believe that this
step allows our algorithm to be more efficient
against polymorphism. We saw in our dataset
that values often depend on the environment
of the victim’s computer, for example their
MAC address, a unique victim identifier, etc.
With typing we take this into account. We
also think that signature generation is eas-
ier to implement in a final step with this
typing step. Finally, this step reduces our
clusters. This improves performance of the
computation-intensive fine-grained clustering
step. We implemented typing using sed and
regular expressions. In the following steps, we
assume that values in query strings are typed.

6.3. Fine-grained clustering

The fine-grained clustering is the step that
takes most computation time. That is why we
inserted it after the coarse-grained clustering
and the typing steps.

The features are the path, keys and value
types of URLs. Using these features we de-
fined a distance function.

The initial distance function is the mean
of three distance functions : one for the path,
one for keys and one for value types.
• The path distance is based on the longest

common substring (LCS). The longest
common substring of two paths is the
longest substring that is in both paths.
For example the longest common sub-
string of “images/a.gif” and “img/b.gif”
is “.gif”. The path distance between two
paths is the longest common substring of
these paths divided by the length of the
longest of these paths.

• The key distance is based on the Jaccard
distance. The Jaccard distance of two
sets A and B is defined as dJ(A,B) =
1 − J(A,B) = 1 − |A∩B|

|A∪B| . Here we
consider the set of keys of an URL. For
example, assume we have URL A and
URL B sharing two common keys. URL
A has three keys and URL B has two
keys in total. J(A,B) = 1 − 2

3
= 1

3
.

If URL A and URL B had no common
keys, their distance would have been 1.

• The value type distance is the same as
the key distance but using value types
instead of keys.

This initial distance gives the same weight
to keys and value types but we observed that
keys and value types are tightly linked. So,
we developed another distance that considers
key/value types pairs instead of separating
these two components. This distance is the
combination of two distances:
• The path distance is the same as in the

previous distance function.
• The keyByVal distance considers

key/value types pairs. Using Jaccard
distance, we select pairs that share
common value types. We compute the
longest common substring on the keys
of these selected pairs.

16

Table 3. Types in values of query strings

Name Example Description
MD5 4f863423326e85d44aae147d2d86e1c0 Cryptographic hash function consisting of

32 hexadecimal figures.
SHA1 97d07314f735998585bb8e2d6b5acb5ac7956690 Cryptographic hash function consisting of

40 hexadecimal figures.
Base64 dG90bw== binary-to-text encoding schemes to repre-

sent binary data using ASCII or UTF-8
string formats.

URL redirec-
tion

http://example.com Can be used for phishing attacks or ob-
fuscation using URLs similar to legitimate
websites.

Float 0.5
Integer 42
Boolean true Can have true of false value
Resolution 800x600 Number of distinct pixels in each dimen-

sion that can be displayed.
Hexadecimal
number

ff4eb Representation of a number in base 16.

MAC address 0a:00:27:00:00:01 Identifier of a network card.
File path C:\test.txt Location of a file
Timestamp 2008-02-14 Identifies when a certain event occurred.
Country code FR Identifies a country
No type utv42 Any value not matching a previous type

Table 4. Typing example for a few URLs

Before typing After typing After removing duplicates
/1.exe?t=0,0378992

=⇒

/1.exe?t=Float

=⇒

/1.exe?t=Float/1.exe?t=0,1008417 /1.exe?t=Float
/1.exe?t=0,1019098 /1.exe?t=Float
/cool.gif?t=0,361706 /cool.gif?t=Float

/cool.gif?t=Float

/cool.gif?t=0,3632929 /cool.gif?t=Float
/cool.gif?t=0,3652765 /cool.gif?t=Float
/cool.gif?t=0,3674585 /cool.gif?t=Float
/cool.gif?t=0,3681452 /cool.gif?t=Float
/cool.gif?t=0,3702814 /cool.gif?t=Float
/cs.gif?t=0,1790583 /cs.gif?t=Float

/cs.gif?t=Float/cs.gif?t=0,1791803 /cs.gif?t=Float
/cs.gif?t=0,1792719 /cs.gif?t=Float
/ftse2.exe?t=0,73164 /ftse2.exe?t=Float /ftse2.exe?t=Float/ftse2.exe?t=0,7345697 /ftse2.exe?t=Float
/gggg.exe?t=0,1857721 /gggg.exe?t=Float

/gggg.exe?t=Float/gggg.exe?t=0,1858026 /gggg.exe?t=Float
/gggg.exe?t=0,1859552 /gggg.exe?t=Float
/gggg.exe?t=0,1861994 /gggg.exe?t=Float

When we have only paths in the two URLs,
we use only the path distance. If with have

only one URL with a query strings, we use
only the path distance with a discriminating

17

factor. If both URLs have a query string, we
take the mean of the two distances.

To understand why this distance is better
than the previous one, consider the following
example.
A = “index.php?a=integer&b=no type&c=md5”
B = “index.php?a=no type&b=integer&c=sha1”
C = “index.php?a=integer&b=integer&c=md5”
Our intuition shows that B should be closer
to C than to A, so we should have
D(A,B) > D(B,C). This is false for the
old distance function but true for the new
distance function.

None of these distances is biased by the
length of URLs. Also instead of considering
keys and value types as strings, we consider
them as sets belonging to an URL. Parameters
order in the query strings are irrelevant.

For the clustering algorithm, we also
adopted an unsupervised clustering algorithm
to completely automate this clustering step.
We wanted an algorithm that identifies noise
because we have a lot of URLs that are
very unique and are not representative of any
malware family. Noise can also be used for
evaluation of our clustering and the quality
of our dataset. We also looked for low com-
plexity because our distance already takes a
lot of time and resources to compute. Finally,
we needed an algorithm that does not take
the explicit number of clusters as input be-
cause we do not know how many malware
families are in our dataset. DBSCAN requires
parameters related the distance between two
points of the same cluster and the minimum
number of objects to create clusters. While
these parameters have an influence on the
number of clusters, the latter is a result of the
clustering process and not an input parameter.
We found that DBSCAN (see section 2.5) fits
with our requirements.

We implemented our distances using
dynamic programming. Our distances
and our DBSCAN implementations use
MATLAB [41]. We also used parallelism
so that we dedicate one core per fine-

grained clustering of a coarse-grained cluster.
Therefore, we can have up to 30 cores used.
Despite these efforts, our global clustering
algorithm still takes more than 6 hours to
compute clusters for a dataset of 100,000
URLs on a server with more than 30 cores.
It takes two weeks to have final clusters
for the full 1.3 million URLs dataset. We
believe that our distances are to blame for
that because LCS takes time to compute and
our key sets are very large.

6.4. Visualization

We implemented visualization tools to have
a look at the shapes of our clusters. We
wanted to confirm that a density-based clus-
tering algorithm fits well with our dataset. To
have visualizations of our clusters, we first
need to compute coordinates of our URLs
based on the whole distance matrix, then we
need interfaces to see and navigate through
the results in two and three dimensions where
each point represents a URL. One goal of this
visualization is also to give hints at how to
tweak our clustering algorithms to have better
results.

6.4.1. Dimension reduction. Dimension re-
duction is a machine learning and statistics
problem. It consists in reducing the number
of random variables considered [42]. Because
we have a distance matrix, we used classical
multidimensional scaling (MDS) [43] which
takes a dissimilarities matrix as input and
gives a coordinates matrix that minimizes a
loss function as output. This algorithm tries
to minimize information loss. One of its ad-
vantages is that it also reports how efficient
the process is because we have variances
(called eigenvalues) associated with the dif-
ferent axes. We keep axes that provide the
most information. With that we can also com-
pute the variance percentage of each axis and
get an idea of how correct is our dimension

18

reduction. This is essential to know if we
should use two or three dimensions.

In our dataset, we often have around 30%
of the variance on three axis. This is too
low to get a correct visualization. We only
have a few clusters with more than 70% of
the variance on three axis. So, when using
visualization we need take into account that
the representation is often highly biased by
the dimension reduction.

We implemented classical MDS with
MATLAB.

6.4.2. Interfaces. We first used
matplotlib [44] (see Figure 19) to visualize
our clusters. But one problem is that we
did not see the labels of our points giving
the associated URLs. Without the URLs,
we cannot use visualization to tweak our
clustering algorithms nor navigate through
the results. Because of the big number of
points, we could not either display all labels
at the same time. We did not find any tool
to do that directly, we decided to create our
own visualization interfaces.

Figure 20. 2D visualization of fine-grained
clusters of a coarse-grained cluster with
46% information variance on the x axis
and 33% information variance on the y
axis. One color is associated with each
fine-grained cluster.

With the help of the D3.js javascript li-
brary [45], we created using mainly javascript
a web page where we can select which cluster
we want to visualize. It gives a two dimen-
sion representation (see Figure 20), when the
mouse is on a point we have the URL associ-
ated. We have zoom and navigation features.

Figure 21. 3D visualization of coarse-
grained clusters of a extract of the dataset.
One color is associated with each fine-
grained cluster.

Because the third axis also often contains
a lot of information, we wanted to create an
interface for 3D visualization. We first tried
some libraries to use WebGL in the browser
but the performances were not good enough
because of the huge number of points we
have (up to 1.3 millions). The only solution
we found was to call on Urho3D game en-
gine [46]. This impressive game engine has
a built-in feature to optimize performances
for duplicate objects. We used this feature by
considering all points in the same dataset as
duplicates and create our own scene. This tool
runs on a client and not on a webpage using
Linux or MacOS X. It can be ported with a
few lines of code to Windows, Android or
IOS. Figure 21 is a screenshot of this tool.
100,000 points are rendered at 30 frames per
second. This tool is implemented in C++.

We think these interfaces are big contribu-
tions of this work since we did not find any
similar and generic tools for this task.

6.5. Quality

Once we have our clusters, we need to
evaluate them. Our goal here is to be able to
label them with a quality value. In this way
we could have a certain level of confidence
our malware families and also compare our
results for different experiments. We imple-

19

Figure 19. 3D visualization of coarse-grained clusters using projection. One color is
associated with each fine-grained cluster.

mented two quality metrics with MATLAB.

Figure 22. Similarity matrix of a coarse-
grained cluster before DBSCAN cluster-
ing.

As we saw in section 2.7, a similarity

matrix S can be defined as S = 1−D where
D is a distance matrix. Therefore, if S(r, c)
is close to 1, URLs r and c are very similar.
Visualizing the density of a similarity matrix
gives a hint on the efficiency of a clustering
algorithm. A good clustering process for a
dataset creates areas with similar densities
by grouping URLs. In Figure 22 we show
the density of a similarity matrix of a given
coarse-grained cluster before our fine-grained
clustering. We can see that the matrix is
not organized, we don’t see uniform areas.
On the contrary after clustering, Figure 23
shows an organized matrix with uniform areas
where we can find two families introduced
in section 5.5. Therefore, our fine-grained
clustering algorithm gives good results.

We also saw in section 2.7 the Dunn Index.

20

Figure 23. Similarity matrix of a coarse-grained cluster after DBSCAN clustering.

We use it in our work to give a quality value
on our coarse-grained clusters. Thanks to this
index we saw that the quality of our results
differ a lot depending on the size of our
dataset.

6.6. Signatures

A signature is generated for each fine-
grained cluster. Our signatures generation re-
lies on generalized suffix trees [47]. We had
to consider typed values as symbols and
not as strings. Because we have unordered
key/values pairs due to the sets we consider
for our fine-grained clustering, we also used
positive lookahead [48] in regular expressions
for the signatures generation.

6.7. Web interface

All the tools and algorithms we developed
are integrated in a web application, see Figure
24. This single page application is based on
Ember.js [49] and Node.js [50]. It aims at
providing a centralized interface where all
current and past experiences are displayed
and can be analyzed. A few clicks are enough
to launch a new experiment. Finally, it also

avoids the pain of connecting to the server
using SSH and learning the command-line
interfaces of both Linux and our tools.

7. Future work

While giving excellent results with a
randomly-chosen 5,000 extract of URLs and
satisfactory results for 100,000 URLs. We
still need to improve the performance for
the entire dataset. We are currently trying
to find appropriate clustering parameters for
each extract. We also think our model may be
overfitting. Another problem is performance
of our fine-grained clustering step.

7.1. Signatures

We would like to deploy our signatures
on live traffic to evaluate them. It would be
interesting to collect the number of times
a signature matched to try to correlate this
with the clustering quality associated with this
signature.

21

Figure 24. Screenshot of the web interface to launch experiments and analyze results

7.2. Incremental datasets and online
mode

Once we have signatures, they can be used
to filter out unused clusters. To circumvent
our performance problem on DBSCAN, an
online mode can be considered. Instead of
working with an old dataset, live traffic would
be used. This approach would maybe allow
pruning unmatched rules and crowded clus-
ters. We would only keep the best reference
distance matrix with respect to the size we
want it to have.

The workflow for a new URL would then
be: try to match a signature, if a signature
matches we do not perform clustering. If
no signature matches we only compute the
missing distances in DBSCAN to perform the
fine-grained clustering step.

A similar approach may be studied if in-
cremental datasets are used.

7.3. Coarse-grained clustering

Our coarse-grained clustering gives results
that are not optimal. We often have similar
looking URLs in different clusters which is
very bad for the whole clustering architec-
ture. We see that a significant number of
URLs in noise after DBSCAN have similari-
ties with other URLs in other coarse-grained

cluster. We believe that if these URLs were
in the same coarse-grained cluster, a new
fine-grained cluster with these URLs instead
of having noise. Because of that, we have
detected a lot of noise, sometimes up to three
quarters of a coarse-grained cluster. We also
observed that there is no relation between the
percentage of URLs in noise and the Dunn
index.

To resolve these issues, other features
should be tried. For example we could move
the typing step before the coarse-grained clus-
tering step and have features based on types
present in value types of query strings. Be-
cause these features seem similar to the dis-
tance function of the fine-grained clustering
step, we should have closer URLs for this
distance in the same coarse-grained cluster.

Another solution may be to try canopy
clustering [51] instead of k-means. Canopy
clustering is an unsupervised algorithm
specifically designed as a step before another
clustering algorithm. It is usually performed
before K-means or Hierarchical clustering. It
speeds up the clustering in the case of large
datasets. For these datasets a single step with
the main algorithm may be impractical due to
its size.

The algorithm is as follows. Start with a list
of points and two distance thresholds T1 >

22

T2.
1) Select a random point from this list to

create a canopy center.
2) Compute its distance to all other points

in the list.
3) Insert all the points which fall within

the distance threshold of T1 into this
canopy.

4) Remove from the main list all the points
which fall within the threshold of T2.
These points, already in a canopy, can-
not be a canopy center or create new
canopies.

5) Repeat from step 1 to 4 until the main
list is empty.

Figure 25 provides an illustration where
canopy clustering is used in two dimensions
with three canopies.

Figure 25. Canopy clustering with three
canopies [52]

7.4. Typing

Improvements can be proposed for typ-
ing. We detected another type, the volume
serial number which is present in 4.5%
of URLs in our entire dataset. This is
a sequence of hexadecimal figures sepa-
rated by dashes that matches the regular

expression [0-9a-fA-F]{8}-([0-9a-fA-F]{4}-
){3}[0-9a-fA-F]{12}. This serial is generated
when the disk is formated based on the cur-
rent computer’s time. We believe that volume
serial numbers are used to uniquely identify a
victim even when the victim’s IP changes. It
has for example been used to generate unique
victim identifiers for the “Red October” at-
tack [53]. Currently, volume serial numbers
are replaced by no type.

We empirically observed around 30% of
URLs having types also in their path or keys.
It would be interesting to study typing in these
fields as well.

Finer types can be defined using length of
values replaced by a type for types such as
no type, hexa, integer or float.

8. Conclusion

Detection systems usually differentiate
signature-based detection and network behav-
ior anomaly detection. Our work takes advan-
tage of the two methods by clustering URLs
depending not on signatures but on heuristics
and giving fine-grained clusters that can be
used to produce signatures as output. While
there is still work to improve our system, we
have been able to create clusters of malware
families using clustering algorithms on URLs.
Our contributions include studying clustering
using only paths and query strings of URLs.
Our novel clustering architecture use a typing
step before clustering which improve perfor-
mance and results. As far as we know we are
the first to use DBSCAN, rather than for ex-
ample hierarchical clustering, for URLs clus-
tering. We created innovative generic tools
for machine learning such as a centralized
web platform to monitor and execute machine
learning experiments. We developed visual-
ization tools for points navigation that scale
with huge datasets.

23

Acknowledgment

The author would like to thank Joaquin
Garcia-Alfaro and Hervé Debar for tutoring
this project. This work would have not be
possible without the collaboration of Orange
Labs and Nizar Kheir. Dingqi Yang greatly
helped on the data mining ideas and algo-
rithms. This work is based on previous work
from Ashish Gupta and Sergi Martinez-Bea.
The author is grateful to Gregory Blanc for
his ideas and Emmanuel Chaboud for his
precious help with Urho3D.

References

[1] T. Berners-Lee, R. Fielding, and L. Masinter,
“Rfc 3986: Uniform resource identifier (uri):
Generic syntax,” The Internet Society, 2005.

[2] “Glossary, Microsoft Malware Protection
Center,” http://www.microsoft.com/security/
portal/mmpc/shared/glossary.aspx, accessed:
2014-01-21.

[3] C. Romesburg, Cluster analysis for researchers.
Lulu. com, 2004.

[4] “The Microsoft Windows Malicious Software
Removal Tool,” http://www.microsoft.com/
en-gb/security/pc-security/malware-families.
aspx, accessed: 2014-01-10.

[5] N. Hachem, Y. Ben Mustapha, G. G. Granadillo,
and H. Debar, “Botnets: lifecycle and taxonomy,”
in Network and Information Systems Security
(SAR-SSI), 2011 Conference on. IEEE, 2011,
pp. 1–8.

[6] “The Resurrection of RedKit,”
http://www.kahusecurity.com/2014/
the-resurrection-of-redkit/, published: 2014-
01-07, Accessed: 2014-01-10.

[7] M. Janus, “runforestrun, gootkit and random
domain name generation,” https://www.securelist.
com/en/blog/208193713/RunForestRun
gootkit and random domain name generation,
published: 2012-08-01, Accessed: 2014-01-10.

[8] Z. Bu, P. Bueno, R. Kashyap, and A. Woso-
towsky, “The new era of botnets,” White paper
from McAfee, 2010.

[9] E. J. Kartaltepe, J. A. Morales, S. Xu,
and R. Sandhu, “Social network-based bot-
net command-and-control: emerging threats and
countermeasures,” in Applied Cryptography and
Network Security. Springer, 2010, pp. 511–528.

[10] P. Simon, Too Big to Ignore: The Business Case
for Big Data. Wiley. com, 2013.

[11] M. Learning, “Tom mitchell,” ISBN: 0-07-
042807-7, Publisher: McGraw Hill, 1997.

[12] “Proceedings, international conferences on
knowledge discovery and data mining,” ACM.

[13] T. S. Guzella and W. M. Caminhas, “A review of
machine learning approaches to spam filtering,”
Expert Systems with Applications, vol. 36, no. 7,
pp. 10 206–10 222, 2009.

[14] “Dat Mining research papers from Google,” http:
//research.google.com/pubs/DataMining.html,
accessed: 2014-01-14.

[15] T. Lane and C. E. Brodley, “An application of
machine learning to anomaly detection,” in Pro-
ceedings of the 20th National Information Sys-
tems Security Conference, vol. 377. Baltimore,
USA, 1997.

[16] R. Sommer and V. Paxson, “Outside the closed
world: On using machine learning for network in-
trusion detection,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp.
305–316.

[17] T. O. Ayodele, “Machine learning overview,”
New Advances in Machine Learning, Y. Zhang,
Ed, vol. 41, pp. 19–48.

[18] R. Xu, D. Wunsch et al., “Survey of clustering al-
gorithms,” Neural Networks, IEEE Transactions
on, vol. 16, no. 3, pp. 645–678, 2005.

[19] S. Guha, R. Rastogi, and K. Shim, “Cure: an
efficient clustering algorithm for large databases,”
in ACM SIGMOD Record, vol. 27, no. 2. ACM,
1998, pp. 73–84.

24

http://www.microsoft.com/security/portal/mmpc/shared/glossary.aspx
http://www.microsoft.com/security/portal/mmpc/shared/glossary.aspx
http://www.microsoft.com/en-gb/security/pc-security/malware-families.aspx
http://www.microsoft.com/en-gb/security/pc-security/malware-families.aspx
http://www.microsoft.com/en-gb/security/pc-security/malware-families.aspx
http://www.kahusecurity.com/2014/the-resurrection-of-redkit/
http://www.kahusecurity.com/2014/the-resurrection-of-redkit/
https://www.securelist.com/en/blog/208193713/RunForestRun_gootkit_and_random_domain_name_generation
https://www.securelist.com/en/blog/208193713/RunForestRun_gootkit_and_random_domain_name_generation
https://www.securelist.com/en/blog/208193713/RunForestRun_gootkit_and_random_domain_name_generation
http://research.google.com/pubs/DataMining.html
http://research.google.com/pubs/DataMining.html

[20] T. Zhang, R. Ramakrishnan, and M. Livny,
“Birch: an efficient data clustering method for
very large databases,” in ACM SIGMOD Record,
vol. 25, no. 2. ACM, 1996, pp. 103–114.

[21] A. Rajaraman and J. D. Ullman, “Mining of
massive datasets.”

[22] J. A. Hartigan and M. A. Wong, “Algorithm as
136: A k-means clustering algorithm,” Journal of
the Royal Statistical Society. Series C (Applied
Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A
density-based algorithm for discovering clusters
in large spatial databases with noise.” in KDD,
vol. 96, 1996, pp. 226–231.

[24] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander, “Optics: ordering points to identify
the clustering structure,” ACM SIGMOD Record,
vol. 28, no. 2, pp. 49–60, 1999.

[25] D. H. Wolpert, “The lack of a priori distinctions
between learning algorithms,” Neural computa-
tion, vol. 8, no. 7, pp. 1341–1390, 1996.

[26] M. Riedewald, “CS 6220: Data
Mining Techniques class - Clustering,”
http://www.ccs.neu.edu/home/mirek/classes/
2012-S-CS6220/Slides/Lecture4-Clustering.pdf,
accessed: 2014-01-16.

[27] D. L. Davies and D. W. Bouldin, “A cluster sep-
aration measure,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, no. 2, pp.
224–227, 1979.

[28] J. C. Dunn, “A fuzzy relative of the isodata
process and its use in detecting compact well-
separated clusters,” 1973.

[29] W. M. Rand, “Objective criteria for the evaluation
of clustering methods,” Journal of the American
Statistical association, vol. 66, no. 336, pp. 846–
850, 1971.

[30] M. Levandowsky and D. Winter, “Distance be-
tween sets,” Nature, vol. 234, no. 5323, pp. 34–
35, 1971.

[31] N. X. Vinh, J. Epps, and J. Bailey, “Information
theoretic measures for clusterings comparison: is
a correction for chance necessary?” in Proceed-
ings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 1073–
1080.

[32] M. Z. Rafique and J. Caballero, “Firma: Malware
clustering and network signature generation with
mixed network behaviors.”

[33] “The malicia project,” http://www.
malicia-project.com, accessed: 2014-01-17.

[34] A. Le, A. Markopoulou, and M. Faloutsos,
“Phishdef: Url names say it all,” in INFOCOM,
2011 Proceedings IEEE. IEEE, 2011, pp. 191–
195.

[35] G. Jacob, R. Hund, C. Kruegel, and T. Holz,
“Jackstraws: Picking command and control con-
nections from bot traffic.” in USENIX Security
Symposium, vol. 2011, 2011.

[36] R. Perdisci, W. Lee, and N. Feamster, “Behav-
ioral clustering of http-based malware and signa-
ture generation using malicious network traces.”
in NSDI, 2010, pp. 391–404.

[37] M. Zalewski, The Tangled Web: A Guide to
Securing Modern Web Applications. No Starch
Press, 2012.

[38] S. Garera, N. Provos, M. Chew, and A. D. Rubin,
“A framework for detection and measurement
of phishing attacks,” in Proceedings of the
2007 ACM workshop on Recurring malcode,
ser. WORM ’07. New York, NY, USA:
ACM, 2007, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1314389.1314391

[39] Sophos, “Sus/sality-a,” http://www.sophos.
com/en-us/threat-center/threat-analyses/
suspicious-behavior-and-files/Sus∼Sality-A/
detailed-analysis.aspx, accessed: 2014-01-21.

[40] D. Albanese, R. Visintainer, S. Merler,
S. Riccadonna, G. Jurman, and C. Furlanello,
“mlpy: machine learning python,” arXiv preprint
arXiv:1202.6548, 2012.

[41] M. U. Guide, “The mathworks,” Inc., Natick, MA,
vol. 5, 1998.

25

http://www.ccs.neu.edu/home/mirek/classes/2012-S-CS6220/Slides/Lecture4-Clustering.pdf
http://www.ccs.neu.edu/home/mirek/classes/2012-S-CS6220/Slides/Lecture4-Clustering.pdf
http://www.malicia-project.com
http://www.malicia-project.com
http://doi.acm.org/10.1145/1314389.1314391
http://www.sophos.com/en-us/threat-center/threat-analyses/suspicious-behavior-and-files/Sus~Sality-A/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/suspicious-behavior-and-files/Sus~Sality-A/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/suspicious-behavior-and-files/Sus~Sality-A/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/suspicious-behavior-and-files/Sus~Sality-A/detailed-analysis.aspx

[42] S. T. Roweis and L. K. Saul, “Nonlinear dimen-
sionality reduction by locally linear embedding,”
Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[43] J. B. Kruskal, “Multidimensional scaling by op-
timizing goodness of fit to a nonmetric hypoth-
esis,” Psychometrika, vol. 29, no. 1, pp. 1–27,
1964.

[44] J. D. Hunter, “Matplotlib: A 2d graphics envi-
ronment,” Computing in Science & Engineering,
pp. 90–95, 2007.

[45] M. Bostock, “d3. js data-driven documents,” http:
//d3js.org/, 2011, accessed: 2014-01-23.

[46] L. rni, “Urho3d,” https://github.com/urho3d/
Urho3D, accessed: 2014-01-23.

[47] M. Apel, C. Bockermann, and M. Meier, “Mea-
suring similarity of malware behavior,” in Local
Computer Networks, 2009. LCN 2009. IEEE 34th
Conference on. IEEE, 2009, pp. 891–898.

[48] T. Stubblebine, Regular Expression Pocket Refer-
ence: Regular Expressions for Perl, Ruby, PHP,
Python, C, Java and. NET. ” O’Reilly Media,
Inc.”, 2007.

[49] “ember.js,” http://emberjs.com/, accessed: 2014-
01-23.

[50] “node.js,” http://nodejs.org/, accessed: 2014-01-
23.

[51] A. McCallum, K. Nigam, and L. H. Ungar, “Ef-
ficient clustering of high-dimensional data sets
with application to reference matching,” in Pro-
ceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data
mining. ACM, 2000, pp. 169–178.

[52] “Canopy Clustering - Apache Mahout - Apache
Software Foundation,” https://mahout.apache.
org/users/clustering/canopy-clustering.html,
accessed: 2014-01-22.

[53] Kapersky, “Red October. Detailed Malware
Description 3. Second Stage of Attack,”
https://www.securelist.com/en/analysis/
204792264/Red October Detailed Malware
Description 3 Second Stage of Attack,
accessed: 2014-01-23.

26

http://d3js.org/
http://d3js.org/
https://github.com/urho3d/Urho3D
https://github.com/urho3d/Urho3D
http://emberjs.com/
http://nodejs.org/
https://mahout.apache.org/users/clustering/canopy-clustering.html
https://mahout.apache.org/users/clustering/canopy-clustering.html
https://www.securelist.com/en/analysis/204792264/Red_October_Detailed_Malware_Description_3_Second_Stage_of_Attack
https://www.securelist.com/en/analysis/204792264/Red_October_Detailed_Malware_Description_3_Second_Stage_of_Attack
https://www.securelist.com/en/analysis/204792264/Red_October_Detailed_Malware_Description_3_Second_Stage_of_Attack

	Introduction
	Vocabulary
	Goals
	Assumptions

	Data Mining and Machine learning
	Definitions and examples
	Brief history
	Machine learning for information security
	Supervised and unsupervised learning
	Clustering algorithms
	Features and distance function
	Evaluation and quality

	Related work
	Our dataset
	Preliminary statistical analysis of the dataset
	Verbs
	Length
	Subpaths and query fields
	File extensions
	Bag of words

	Methodology and implementation
	Coarse-grained clustering
	Typing
	Fine-grained clustering
	Visualization
	Dimension reduction
	Interfaces

	Quality
	Signatures
	Web interface

	Future work
	Signatures
	Incremental datasets and online mode
	Coarse-grained clustering
	Typing

	Conclusion
	References

