Security Model of Firefox OS

Anthony VEREZ¹ Guillaume HUGUES¹

Soutenance mini-projets SSR, 2013

Table of Contents

- General overview of Firefox OS
- Security Guidelines
- Security Implementation
 - User Side
 - Application developpement
 - System architecture
- Security of Competitors' Products
- Conclusion

General overview of Firefox OS
Security Guidelines
Security Implementation
Security of Competitors' Products
Conclusion

History

• Jul 2011 : Announcement

• Jul 2011 : Announcement

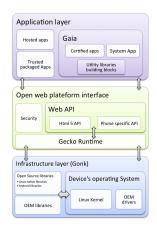
• Jul 2012 : Alcatel and ZTE become first manufacturers

• Jul 2011 : Announcement

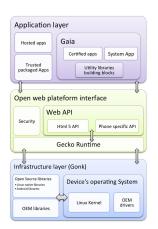
• Jul 2012 : Alcatel and ZTE become first manufacturers

Nov 2012 : First Firefox OS simulator

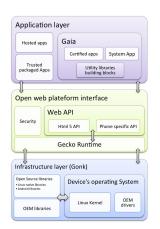
• Jul 2011 : Announcement

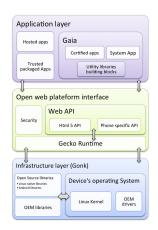

• Jul 2012 : Alcatel and ZTE become first manufacturers

Nov 2012 : First Firefox OS simulator


• Dec 2012 : Version 1.0 of Firefox 0S (stable)

- Jul 2011 : Announcement
- Jul 2012 : Alcatel and ZTE become first manufacturers
- Nov 2012 : First Firefox OS simulator
- Dec 2012 : Version 1.0 of Firefox 0S (stable)
- Mar 2013: Version 1.1.1 of Firefox 0S


 Architecture in 3 layers : Gonk, Gecko, Gaia


- Architecture in 3 layers : Gonk, Gecko, Gaia
- Gonk: The lower-level interface (firmware, Linux kernel, drivers, HAL)

- Architecture in 3 layers : Gonk, Gecko, Gaia
- Gonk: The lower-level interface (firmware, Linux kernel, drivers, HAL)
- Gecko : Mozillas layout engine

- Architecture in 3 layers : Gonk, Gecko, Gaia
- Gonk: The lower-level interface (firmware, Linux kernel, drivers, HAL)
- Gecko : Mozillas layout engine
- Gaia: The user interface (HTML5 web applications)

All apps are HTML5 (HTML5,CSS3,Javascript)

- All apps are HTML5 (HTML5,CSS3,Javascript)
- App = manifest file + resources

```
"name": "My SSR App",
"description": "Does nothing...",
"launch_path": "/",
"icons": {
  "128": "/ima/icon-128.pna"
},
"developer": {
  "name": "Anthony Verz & Guillaume Huaues".
  "url": "http://www.homepage.com"
"default_locale": "en".
"installs_allowed_from": [
  "https://marketplace.firefox.com",
  "https://marketplace.example.com"
٦,
"orientation": ["portrait"],
"permissions": {
  "contacts": {
    "description": "Required for ...".
    "access": "readwritecreate"
  "aeolocation": {
    "description": "Required for ..."
```

- All apps are HTML5 (HTML5,CSS3,Javascript)
- \bullet App = manifest file + resources
- Hosted apps vs.
 Packaged/Installed apps

```
"name": "My SSR App",
"description": "Does nothing...",
"launch_path": "/",
"icons": {
  "128": "/ima/icon-128.pna"
"developer": {
  "name": "Anthony Verz & Guillaume Huaues".
  "url": "http://www.homepage.com"
"default_locale": "en".
"installs_allowed_from": [
  "https://marketplace.firefox.com",
  "https://marketplace.example.com"
"orientation": ["portrait"],
"permissions": {
  "contacts": {
    "description": "Required for ...".
    "access": "readwritecreate"
  "aeolocation": {
    "description": "Required for ..."
```

- All apps are HTML5 (HTML5,CSS3,Javascript)
- $\bullet \ \mathsf{App} = \mathsf{manifest} \ \mathsf{file} + \mathsf{resources} \\$
- Hosted apps vs.
 Packaged/Installed apps
- Javascript functions divided in separate APIs (Application Programming Interfaces) for security

```
"name": "My SSR App",
"description": "Does nothing...".
"launch_path": "/",
"icons": {
  "128": "/ima/icon-128.pna"
"developer": {
  "name": "Anthony Verz & Guillaume Huaues".
  "url": "http://www.homepage.com"
"default_locale": "en".
"installs allowed from": [
  "https://marketplace.firefox.com",
  "https://marketplace.example.com"
"orientation": ["portrait"],
"permissions": {
  "contacts": {
    "description": "Required for ...".
    "access": "readwritecreate"
  "aeolocation": {
    "description": "Required for ..."
```

Hardware

- Support for Android 4.0
- Constructors : Alcatel, ZTE, LG, Huawei and Foxconn

 First Firefox OS phones : Alcatel One Touch Fire & ZTE Open

Table of Contents

- General overview of Firefox OS
- Security Guidelines
- Security Implementation
 - User Side
 - Application developpement
 - System architecture
- 4 Security of Competitors' Products
- Conclusion

Privacy

- Privacy
- Strict security reviews scheme

- Privacy
- Strict security reviews scheme
- Apps security: permissions, isolation and code review

- Privacy
- Strict security reviews scheme
- Apps security: permissions, isolation and code review
- Updates : code signing and network security

- Privacy
- Strict security reviews scheme
- Apps security: permissions, isolation and code review
- Updates: code signing and network security
- Memory corruption protections

- Privacy
- Strict security reviews scheme
- Apps security: permissions, isolation and code review
- Updates: code signing and network security
- Memory corruption protections
- File system hardening

- Privacy
- Strict security reviews scheme
- Apps security: permissions, isolation and code review
- Updates: code signing and network security
- Memory corruption protections
- File system hardening
- Divided in 3 role points of view
 - User side
 - Application developpement
 - System architecture

Table of Contents

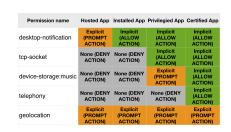
- General overview of Firefox OS
- Security Guidelines
- Security Implementation
 - User Side
 - Application developpement
 - System architecture
- 4 Security of Competitors' Products
- Conclusion

 Some apps require user approval before using some APIs

- Some apps require user approval before using some APIs
- User settings for an app can be changed and authorizations revoked.

- Some apps require user approval before using some APIs
- User settings for an app can be changed and authorizations revoked.
- Strong emphasis on privacy

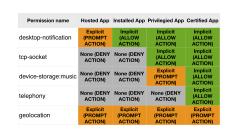
- Some apps require user approval before using some APIs
- User settings for an app can be changed and authorizations revoked.
- Strong emphasis on privacy
- But: Level of configuration very light


App permissions

Packaged = Normal,
 Privileged, Certified

App permissions

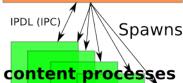
- Packaged = Normal,
 Privileged, Certified
- Each kind of app has its own matrix of permissions


- Certified apps have implicit ALLOW rights for almost all APIs
- Hosted apps have implicit DENY rights for almost all APIs

App permissions

- Packaged = Normal,
 Privileged, Certified
- Each kind of app has its own matrix of permissions

- Certified apps have implicit ALLOW rights for almost all APIs
- Hosted apps have implicit DENY rights for almost all APIs



 Authorization must be requested in manifest file

b2g and content processes

b2g process

- Access to system resources: files, network, multimedia, etc.
- Runs as root

- Used for apps
- No system resources access
- Run as an unprivileged user
- Sanboxed by seccomp-bpf
- Request resources by IPDL (IPC)

App signing for packaged apps

- Goals: integrity, non-repudiation of the developer and ensure that the app has been reviewed
- Cryptographic functions of Firefox (SHA-1, PKCS #7)
- Security of maketplaces not run by Mozilla?
- Patches for updates developed but not integrated into the main codebase yet

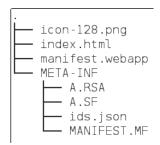
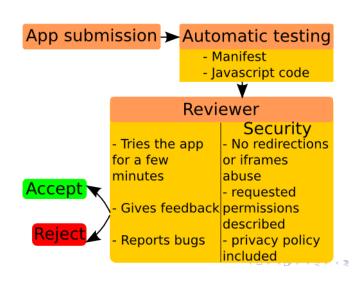



Figure: my_signed_app.zip

App validation

Sandboxing

• "confining a helper application to a restricted environment, within which it has free reign."

Sandboxing

- "confining a helper application to a restricted environment, within which it has free reign."
- IPC: Inter-Process Communications. Each app has its own process (content process) with its workspace and resources.
 - cookies
 - databases
 - offline storage
 - etc.

Sandboxing

- "confining a helper application to a restricted environment, within which it has free reign."
- IPC: Inter-Process Communications. Each app has its own process (content process) with its workspace and resources.
 - cookies
 - databases
 - offline storage
 - etc.
- Seccomp-bpf to sandbox system calls (e.g., exit, read or write functions)

Address Space Layout Randomization (ASLR)

Randomizing memory space layouts to prevent memory corruption First run of the "cat" program on Linux 64 bits (simplified)

Start Address	End Address	Label
00400000	0040b000	/usr/bin/cat
012b1000	012d2000	heap
7f144b0fa000	7f144b29d000	/usr/lib/libc-2.17.so
7fff9c2e1000	7fff9c302000	stack

Second run

Start Address	End Address	Label
00400000	0040b000	/usr/bin/cat
0141d000	0143e000	heap
7fb4ed9fe000	7fb4edba1000	/usr/lib/libc-2.17.so
7fff0a408000	7fff0a429000	stack

File system hardening (1)

- Goals: prevent information leaks, privilege escalation and execution of native code
- Give read-write rights only to areas with user content
- File system hardening is based on Android

File system hardening (2)

Mount point	File system	Options
/	rootfs	read-only
/dev	tmpfs	read-write, nosuid, noexec,
		mode=0755
/proc	proc	read-write, nosuid, nodev, noexec
/cache	yaffs2 or ext4	read-write, nosuid, nodev, noexec
/system	ext4	read-only, nodev
/data	ext4	read-write, nosuid, nodev, noexec
/mnt/sdcard	ext4 or vfat	read-write, nosuid, nodev, noexec,
		uid=1000, fmask=0702, dmask=0702

Table: (Simplified) Filesystem Mounts

Table of Contents

- General overview of Firefox OS
- Security Guidelines
- Security Implementation
 - User Side
 - Application developpement
 - System architecture
- Security of Competitors' Products
- Conclusion

- Most used mobile operating system in Q1 2013 (75%)
- Most targeted by malware (used to be very stupid)

- Most used mobile operating system in Q1 2013 (75%)
- Most targeted by malware (used to be very stupid)
- Main security layers similar to those of Firefox OS

- Most used mobile operating system in Q1 2013 (75%)
- Most targeted by malware (used to be very stupid)
- Main security layers similar to those of Firefox OS
- Application sandbox creates a user/process for each app/library

- Most used mobile operating system in Q1 2013 (75%)
- Most targeted by malware (used to be very stupid)
- Main security layers similar to those of Firefox OS
- Application sandbox creates a user/process for each app/library
- Better memory corruption mitigation than Firefox OS

- Most used mobile operating system in Q1 2013 (75%)
- Most targeted by malware (used to be very stupid)
- Main security layers similar to those of Firefox OS
- Application sandbox creates a user/process for each app/library
- Better memory corruption mitigation than Firefox OS
- Security Vendors

- Most used mobile operating system in Q1 2013 (75%)
- Most targeted by malware (used to be very stupid)
- Main security layers similar to those of Firefox OS
- Application sandbox creates a user/process for each app/library
- Better memory corruption mitigation than Firefox OS
- Security Vendors
- Difficult to upgrade Android on a device

iOS

 A lot of security features enabled by default: boot chain, code signing, advanced memory corruption mitigation, file system hardening and sandboxing

iOS

- A lot of security features enabled by default: boot chain, code signing, advanced memory corruption mitigation, file system hardening and sandboxing
- But a jailbreak is released as soon as a new iOS version is out

iOS

- A lot of security features enabled by default: boot chain, code signing, advanced memory corruption mitigation, file system hardening and sandboxing
- But a jailbreak is released as soon as a new iOS version is out
- Limited malware due to strict restriction of the App Store
- Reduced attack surface due to external software

Security is a strong marketing argument

- Security is a strong marketing argument
- Robust cryptography
- QNX Kernel: a process manager for each process prevents memory corruption

- Security is a strong marketing argument
- Robust cryptography
- QNX Kernel: a process manager for each process prevents memory corruption
- Blackberry Enterprise Server in companies, for confidentiality and ensure security compliance

- Security is a strong marketing argument
- Robust cryptography
- QNX Kernel: a process manager for each process prevents memory corruption
- Blackberry Enterprise Server in companies, for confidentiality and ensure security compliance
- In May 2013, Blackberry 10 first mobile platform approved by the U.S. DoD for future agency use

Table of Contents

- General overview of Firefox OS
- Security Guidelines
- Security Implementation
 - User Side
 - Application developpement
 - System architecture
- 4 Security of Competitors' Products
- Conclusion

• Delay but most crucial security features are here

- Delay but most crucial security features are here
- Security guidelines often inherited from Android

- Delay but most crucial security features are here
- Security guidelines often inherited from Android
- Openness and performance vs security

- Delay but most crucial security features are here
- Security guidelines often inherited from Android
- Openness and performance vs security
- No Java or native code code but web technologies: magnified web attacks?