
Security Model of Firefox OS

Anthony Vérez∗, and Guillaume Hugues∗
∗Télécom SudParis, Institut Mines-Télécom, 91000 Evry, France

June 10, 2013

1. General overview of Firefos OS

Firefox OS (also known as FF OS or B2G for
Boot To Gecko) is Mozilla’s operating system
for smartphones. It aims at creating an open
source platform for mobiles, using open web
technologies. It is developed around three major
software layers, from the lowest to the highest:
Gonk, Gecko and Gaia.

Let’s go over these three layers in detail.

1.1. Gonk

Gonk is the lower-level interface of Firefox OS.
It is, strictly speaking, the operating system. It
consists of a firmware, a modified Linux kernel,
device drivers and a userspace hardware abstrac-
tion layer (HAL). Common userspace libraries
(like libusb, BlueZ, . . .) that can be found in
desktop distributions are directly imported from
open-source projects. However, most of libraries
and protocols dealing with device specific hard-
ware (GPS, camera, . . .) come from the Android
project.

1.1.1. Booting. The boot process on Gonk is very
similar to the one of any Linux based operating
system. After the bootstrap process which is very
device dependent, the Linux kernel is launched
and execution is handled to it. At the end of this
sequence, the init process is launched. At this
point only a ramdisk (a virtual hard drive whose
memory actually resides in RAM) is mounted

on the system and only contains critical utili-
ties, startup scripts and kernel modules. The init
process then mounts necessary file systems and
launch system services such as:

• netd (which configures network interfaces)
• mediaserver
• rild
• b2g

Figure 1. Gonk userspace architecture [1]

1.1.2. mediaserver. This daemon is responsible
for playing audio and video files. Depending on
their codecs, the media files will be decoded using
Linux libraries or proprietary codecs and hard-
ware decoders before being sent to mediaserver.

1.1.3. rild. rild (which stands for Radio Interface
Layer Daemon) is the interface to the telephony
hardware. It allows clients with sufficient priv-
ileges to connect to it through a UNIX-domain
socket. In Firefox OS, the b2g process commu-
nicates with rild through the rilproxy process
because b2g doesn’t have the necessary privileges
to communicate directly with rild (which requires
the client’s group to be radio).

1.1.4. b2g. This is the single most important
process of Firefox OS. It runs with high privileges
and has access to most system resources. This is
the process that runs Gecko, the upper layer of
Gonk, and that is responsible to spawn low-right
process every time an app is launched.

Figure 1 provides an overview of Gonk, its
components and how they interact.

1.1.5. supervisor. This is not an implemented
feature yet, but is being discussed and might
appear in future Firefox OS releases. The idea
is to create a process called supervisor which
would be responsible for the very few actions that
actually need to be executed as root like system
update, shutdown or reboot, use of nice to adjust
processes priorities, etc. In this implementation,
supervisor would run as root:root and b2g would
then run as system:system, which would still be
very high privileges, but not root.

1.2. Gecko

Gecko is Mozilla’s layout engine mostly used
in the web browser Firefox. It is run only once on
the entire system inside the b2g process, using the
libxul.so library and receives rendering requests
through IPDL (IPC Protocol Definition Lan-
guage), a protocol initially developed by Mozilla
for Firefox using inter-process communication
(IPC) and allowing to pass messages between
processes or threads in an organized and secure
way [2] [22]. Because Gecko is executed inside
a highly privileged process, it’s low level imple-
mentation differs from the one found on desktop
distributions. In Firefox OS Gecko has access to
most system resources and hardware, which is
something impossible on common desktop OSes

gNativeWindow = new
android::FramebufferNativeWindow();

sGLContext =
GLContextProvider::CreateWindow();

Figure 2. use of FramebufferNativeWindow
class

because the process never has enough privileges.
The result is an increase in performance since
Gecko can communicate directly with hardware
devices. For example, since Gecko is the only
process using the display, it can safely do it’s
rendering directly on the hardware video memory.
What actually happens is that Gecko uses the C++
FramebufferNativeWindow class (imported from
Android) to map an OpenGL context directly on
the hardware frame buffers (see figure 2).

Figure 3. Firefox OS software layers

1.3. Gaia

Gaia is the user interface of Firefox OS. It is
written entirely in HTML, CSS and Javascript,
and implements all the standard applications of
a smartphone: lock screen, home screen with
app launcher, telephone dialer, mail client, web
browser, marketplace, and many others. It inter-
faces with the phone underlying operating system
using only Open Web APIs. This means that
applications - all of them, even native ones -
communicate only with Gecko using javascript,
and never have direct access to system resources.
Because Gaia only use standard web APIs, it
can work on environments other than Firefox OS,
with degraded functionality though because of the
missing mobile phone specific hardware. This is
interesting for developers because they can easily
test their application using a Firefox plugin that
emulates Firefox OS.

<window>Gecko Chrome
|
+-> <iframe> system app (contains

the lockscreen)
|
+--> <iframe> homescreen app
|
+--> <iframe> keyboard
|
+--> ... more app iframes are

created here as apps are
loaded

Figure 4. Window hierarchy of Gaia [3]

1.4. Applications

Just as every other mobile phone operating sys-
tem, Firefox OS is based on apps. All applications
are developed using HTML5 and use the same
web APIs. However, Firefox OS distinguishes
two kinds of apps: hosted apps and installed -
or packaged - apps. Hosted apps are similar to
web applications used by desktop web browsers.
They are closer to a browser bookmark than an
actual application. The only thing stored on the
mobile device is the URL to the application plus,

optionally, cookies and HTML5 local storage.
These applications do not work without Internet
connection. Packages apps contain all source code
and resources and are installed on the mobile
device. They are designed to work offline as
standalone autonomous applications. These dif-
ferent kinds of application raise different kinds of
security considerations and possible issues which
will be discussed further.

1.4.1. App manifest. In Firefox OS, every ap-
plication is associated with an app manifest. It
is a single JSON file containing all the infor-
mation needed to interact with the application.
It is one of the key elements that distinguish a
Web App from a website. Among other things
the app manifest contains the name, author, icon,
locales and description of your application. Most
importantly, it will also contain a list of Web APIs
(such as geolocation) that your App needs with a
quick mandatory description of the intent behind
the use of that particular API. This allows users
to make informed decisions about apps before
installing them. The description field will be used
and displayed to the user if the use of the API
(such as geolocation) requires user authorization.
If a manifest requests permission for forbidden
API, launch of the application will fail. Use of an
API without a corresponding entry in the manifest
will fail as well.

{
"name": "My SSR App",
"description": "Does nothing.",
"launch_path": "/",
"icons": {
"16": "/img/icon-16.png",
"48": "/img/icon-48.png",
"128": "/img/icon-128.png"

},
"developer": {
"name": "Anthony Verez &

Guillaume Hugues",
"url": "http://homepage.com"

},
"default_locale": "en",
"installs_allowed_from": [
"https://marketplace.firefox.com",
"https://marketplace.example.com"

],

"locales": {
"fr": {

"description": "Ne fait rien.",
"developer": {

"url": "http://homepage.fr"
}

}
},
"orientation": ["portrait"],
"permissions": {

"contacts": {
"description": "Required for id

stealing ;)",
"access": "readwritecreate"
},

"geolocation": {
"description": "Just to know

where you are"
}

}
}

Figure 5. Example of an app manifest

1.5. History

At the time of writing this paper, the latest nighty
build of Firefox OS is at version 1.1.0hd

• Jul 2011: Announcement of B2G [4]
• Feb 2012: First partners (Telefónica, Adobe,

Qualcomm and Deutsche Telekoms Innova-
tion Labs) at Mobile World Congress 2012
[5]

• Jul 2012: B2G is now known as ’Fire-
fox OS’. TCL Communication Technol-
ogy (Alcatel) and ZTE will be manufac-
turing devices running on Firefox OS. ma-
jor network operators including Deutsche
Telekom, Etisalat, Smart, Sprint, Telecom
Italia, Telefónica and Telenor sign a partner-
ship with Mozilla [6]

• Nov 2012: Firefox OS Simulator available
[7]

• Dec 22, 2012 : Release version 1.0 of Firefox
OS [8]

• Jan 15, 2012 : Release version 1.0.1 of
Firefox OS [8]

• Feb 2013: Bunch of new partners including
major operators and manufacturers [9]. Re-
lease of Firefox OS 1.0 [10].

• Mar 29, 2012 : Release version 1.1.1 of
Firefox OS [8]

• Apr 2013: Draft to integrate payment system
[11]

• May 2013: Release of Firefox OS Simulator
3.0 [12]

• Jun 2013: Foxconn devices will use Firefox
OS [13]

1.6. Hardware requirements

Firefox OS will only work on mobile devices that
support Android 4.0 because the operating system
embeds some - not to say a lot - of Android 4.0 source
code. For example it has been successfully tested on a
Samsung Galaxy SII [14].

The first devices officially supporting Firefox OS
will be Alcatel, ZTE, LG and Huawei devices [15].
The devices currently used by developers are Alcatel
One Touch Fire and the ZTE Open (see figure 6 and
figure 7).

Alcatel One Touch Fire [16]:
• 3.5-inch display
• 1GHz processor
• 256MB RAM
• 512MB storage
• 3.2-megapixel camera
• WiFi 802.11b/g/n
• Bluetooth 3.0
• GPS
• 1400mAh battery
• microSD slot with 2GB card is included
• Mini-SIM card slot

Figure 6. Alcatel One Touch Fire used by
developers

Mozilla also recently (June 2013) announced part-
nership with 17 operators throughout the globe [9]:
Amrica Mvil, China Unicom, Deutsche Telekom, Eti-
salat, Hutchison Three Group, KDDI, KT, MegaFon,
Qtel, SingTel, Smart, Sprint, Telecom Italia Group,
Telefnica, Telenor, TMN and VimpelCom.

2. Security Guidelines

Developing an OS always raises many security
considerations and issues, and Firefox OS is no ex-
ception to this rule. The security risks mostly come

ZTE Open [17]:
• 3.5-inch display
• 800MHz Qualcomm MSM7225A processor
• 256MB RAM
• 512MB storage
• 3.2-megapixel camera
• WiFi 802.11a/b/g/n
• Bluetooth 2.1
• GPS

Figure 7. ZTE Open used by developers

from processes that run with high privileges because
if compromised, they could allow an attacker to take
control of the entire device.

In order to avoid security holes, Mozilla tries to
ensure that the application follows the 10 OWASP
Secure Coding Principles [18] [19]:

• Minimize attack surface area
• Establish secure defaults
• Principle of Least privilege
• Principle of Defense in depth
• Fail securely
• Dont trust services
• Separation of duties
• Avoid security by obscurity
• Keep security simple
• Fix security issues correctly

2.1. Security Reviews

Security Reviews are used to identify security-
related issues, determine the level of risk associated
with those issues, and make informed decisions about
risk mitigation or acceptance [20].

Here are some example of security reviews for
Firefox OS (coming from [21]) :

Inter-app communication
Explanation: all inputs to the applications need

to be validated and sanitized. Other inputs that are
sometimes overlooked include the following.

Checklist:
• Validate the origin/content of message events
• Careful with URLs (including location.hash). Al-

though linking from one app:// to another is
prevented, some forced browsing scenarios are
still possible - for example if you applications
periodically sets the location via user input)

• Careful handling any mozbrowser* events from
child frames (see Browser API section below)

Client Side Storage
Explanation: The risks of using client-side storage

in privileged web apps is no different to in any web
content. However given that many privileged applica-
tions are designed to function without internet access,
it more likely client-side storage will be used for
sensitive user data.

Checklist:

• Keep user data to a minimum and avoid storage
of private user information where possible.

• Provide users a way to clear sensitive data.
• Consider encryption for particularly sensitive

data, prior to storage - being wary that any keys
stored on the device can be recovered.

2.2. Outreach

Firefox OS has still a lot of features that require
security reviews. As a result Mozilla is actively looking
for security testers. They are organizing promotion
programs to attract developers and security experts.
Even small challenges are organized where developers
and testers win points and possibly developer phones
(which are phones running under Firefox OS freely
given to developers with a great idea and that have the
skills to develop an application).

3. Security Implementation

Because of the way Firefox OS is designed, secu-
rity issues as well as the implementation of security
features have bean a great concern for Firefox OS
developers.

3.1. User Side

3.1.1. Permissions. Firefox OS has a big list of
permissions, figure 12 is just sample of them. For each
application requesting a explicit permission, which has
to be justified by the app developer, the user can grant
of refuse this permission to the app, see figure 8 and
figure 9.

However, some permissions are implicit which
means that user is to asked if they want to give a
permission or not to an app. In the settings, the user
can list apps and the permissions granted to them.

For Android for example, a malicious app tends
to ask for many if not all permissions which are not
always relevant to the use of a legit app.

Figure 8. Permissions of the Camera app

Figure 9. An app requesting the geolocalisa-
tion permission

Figure 10. Report bugs setting

Figure 11. Mozila’s privacy policy

3.1.2. Privacy. Mozilla wants to make a difference
concerning Privacy. The user can always to send infor-
mation or not to Mozilla and its partners and decide
what is shared. As an example, figure 10 show the
report setting and figure 11 shows a link to Mozilla’s
privacy policy.

Figure 12. Apps permissions example

3.2. Apps Security

3.2.1. Permissions. In order to avoid malicious ap-
plications accessing critical device interfaces of user
private information, applications are divided in four
kinds for which different permissions apply:

• Hosted apps
• Packaged apps
• Privileged (packaged) apps
• Certified (packaged) apps
Privileged apps are authenticated (signed) applica-

tions approved by an app store after a code review
or some equivalent risk management process. Certi-
fied apps are similar to privileged apps but require
additional approval from carrier or OEM. These are
the core applications, and their permissions cannot be
changed.

Permissions are hierarchical, meaning that certified
apps have all the permissions of privileged apps which
have all the permissions of Hosted apps, etc. Per-
missions are used to access some devices functionali-
ties through web APIs (such as geolocation, contacts,
alarm, etc). As we have seen before, they need to
be explicitly requested in the manifest file. But the
application type must also have the permission to use
the API. For some API (such as geolocatoin), the
application must also explicitly request user approval
before using it. For example in figure 12 we see that
the API device-storage:music is forbidden for hosted
apps and simple packaged apps, requires explicit user
approval for privileged apps and is implicitly allowed
for certified apps.

3.2.2. Web APIs. WebAPI is a term used to des-
ignate Javascript API that allows web applications to
access device hardware (like telephony stack, geolo-
cation or vibration hardware). Security is a central
aspect of web API development because some APIs are
private or reserved for some kinds off apps (privileged
or certified).

3.2.3. b2g process. Firefox OS has a core process
named b2g. A good comparison would be to think of
this process as of the root account on Unix systems:
The process has a lot of rights and permissions and is
used to access to most hardware devices.

3.2.4. Content process. Each application runs a
dedicated process called content process, spawned by
b2g process, see figure 13. To mitigate the malicious
actions of an app or not have the whole system
compromised by an app, the content process has only
low privileges. It cannot access to system resources.
To communicate with any other process, it needs to go
via the b2g process using IPC (Inter-Process Commu-
nication). IPC is a popular family of methods used by
threads in one or more processes to communicate with
one another. This communication is implemented with
Mozilla’s IPDL (IPC Protocol Definition Language)
protocol [22]. This protocol is already used in Firefox
by C++ threads to communicate in a secure way. For
e.g. tabs and multithreaded plugins in Firefox work on
this protocol. Each Web API features at least one IPDL
declaration file with the extension .ipdl.

A content process is launched by the b2g pro-
cess when it processes the <iframe mozapp> tag.
All content processes belong to a container, a group
of processes, similar to the plugin-container used by
Firefox. This container is called an out of process
container because of its separation from the rest of the
system. Just before the content process start, all the
file descriptors that the content process is not allowed
to access are closed.

It is planned to add this architecture to tabs in the
Browser app for next releases [23] so that each tab
would run in a dedicated content process and maybe
even launch the Browser app in a content process, it
means that a content process would have to be able to
spawn its own content processes.

3.2.5. System updates. Security in software updates
are crucial. On the one hand, the system has to be
updated with security fixes for known vulnerabilities
to be secure and on the other hand the update process
must be very secure so that an attacker cannot push
his malware through software updates.

Updates are usually created and signed by the device
manufacturer (OEM). They can cover only a part of
the system or all the software. In both cases, if the
changes affect Gonk, then the update is done by a
FOTA (Firmware Over The Air) process. It means
that the entire firmware is downloaded over a wireless
connection from the smartphone. Such an update can
also embed changes for other parts of the system (e.g.,

Figure 13. b2g and content processes

Gaia, Settings, etc.). A strong cryptographic verifica-
tion is made before installing to prevent attackers to
impersonate the OEM or Mozilla to install their own
firmware update in order to have a full and permanent
control over the device. If the update doesn’t include
changes for Gonk, it can be installed with the Mozilla
System Update Utility. In this case, the process is the
same as the one used by Firefox, including the MAR
(Mozilla ARchive) format.

An update service runs on the device and periodi-
cally connect to the Internet to check for updates. If
an update for the system is available, a notification for
the user shows up asking to confirm the installation.
Before starting to download the package, the system
checks that the space requirements are met and that
no web apps are currently running. The update is
fetched using SSL with a trusted certificate, saved in a
secure system folder, whenever possible and stored in
a secure location to prevent attackers from replacing
the update by their software if they already have some
control over the device. Between the download and
the installation of the update, the system makes some
verifications:

• Update origin, the location from where the up-
date was downloaded must match the protocol,

.
|-- icon-128.png
|-- index.html
|-- manifest.webapp
|-- META-INF

|-- A.RSA
|-- A.SF
|-- ids.json
|-- MANIFEST.MF

1 directory, 7 files

Figure 14. Hierarchy of an sample signed app

domain and port of the system update settings
• file integrity, strong checksums algorithms are

used to verify that the downloaded file is the one
we were expecting

• code signature, a certificate authenticate the issuer
of the update and it must be checked against a
trusted root certificate

The manufacturer (OEM) can also provide its own
update service.

3.2.6. App signing. To add integrity protection to
the apps, Firefox OS will require downloadable apps
to be packaged in a zip file signed by the store from
which it has been downloaded. Mozilla will run its
marketplace for apps but also encourages developers
to run their own app stores which raises concerns
from security experts because on other platforms most
malicious apps come from third party app repositories.
Mozilla reuses security libraries of Firefox for Firefox
OS’ cryptography.

The signature files are packed into the zip, in the
META-INF folder, see figure 14. Inside this folder, the
MANIFEST.MF file displayed in figure 15 stores the
SHA-1 hash of each file. The standard used for signing
the app is PKCS #7.

As of the time of writing this article, there are
patches to add signing mechanisms for updates [24]
but they are not yet merged in the main codebase.

3.2.7. App validation. An app validation process
will be used to ensure that the apps in Mozilla’s
marketplace are legit. Testers review the manifest and
try submitted applications for a few minutes [25]. Their
task is to give feedback and constructive bug report
to the developer if the app doesn’t work and decide
to reject it, at least temporarily, until the app is fixed
and the Marketplace conditions are respected. As for
security restrictions, the app manifest needs to have

Manifest-Version: 1.0

Name: icon-128.png
SHA1-Digest: oYaPCEWEfFz3nB80N9+
PyHh8bRY=

Name: index.html
SHA1-Digest: mMPI7v18vD5EIg1wga8
lGvt6JE4=

Name: manifest.webapp
SHA1-Digest: UHd/+C+eY2FPgYLfGlF
L4cN+taU=

Name: META-INF/ids.json
SHA1-Digest: IcEKUdr8XMXWn1DnJhV
N8pv7luU=

Figure 15. MANIFEST.MF

the same origin (scheme, hostname and port number)
as the app. The Content-Type header of the manifest
have to be application/x-web-app-manifest+json. The
reviewer will check that an app doesn’t abuse redirec-
tions or iframes, which is a common practice for web
malware. The developer needs to describe the usage of
each requested privilege. Finally, the app will have to
include some sort of privacy policy. In addition to the
manual review, automatic tests will be run submitted
apps, especially for the javascript code.

An app has to be considered as major attack vector
on a mobile platform. It can be created or modified
(e.g. bundled with a malware) by an attacker. To
lower the risks having of an app compromised, Mozilla
reviews the apps sent to its marketplace (but developers
can send their app to other marketplaces). Firefox OS
also features an app signing mechanism to verify the
integrity of an app before installing it. In case an
app tries to compromise the system, it shouldn’t be
able to access to resources of other apps and should
be confined to the permissions the user has given to
the app. Apps security has been thought over and
designed from the very start of the project. Although
the technologies used to create apps in Firefox OS
bring new security challenges to the mobile platforms,
they are common on the web and Mozilla seems to
use its security experience in this area to design their
apps security features. That being said, a lot of security
features are yet in development and are very likely not
to be available when the first devices using Firefox OS

will be on the market.

3.3. Security Architecture

3.3.1. Sandboxing. Sandboxing is defined as the
action of “confining a helper application to a restricted
environment, within which it has free reign.” [26]

Sandboxing usage in Firefox OS aims at mitigating
risks and protecting users’ data, the platform and
mobile phone.

inter-process communications. First, this con-
cept is used for an app run-time execution. A
workspace is dedicated for each app; it can use only
the Web APIs and data it is supposed to. It also
has resources specifically associated such as cookies,
databases, offline storage, etc. Resources are not acces-
sible directly but through Web APIs. These restrictions
are implemented with a file descriptors whitelist.
Gecko needs to have high privileges to be able to
access to hardware features of the mobile device. An
app runs in a child process of the b2g (Gecko) process
and isolated in the sandbox described above. The new
process has its own memory space and cannot elevate
its privileges to have permissions of the b2g process.
The latter is responsible for checking if the child
process has the necessary permission to perform the
attempted actions. The app process can only commu-
nicate with the b2g process and not directly with other
processes (including apps). With this architecture, the
app process requests resources using the IPDL protocol
to the b2g process that will check the security policy of
the app including type of app and permissions specified
in the app manifest before performing the action on the
behalf of the content process and pass the result back.

Calls from the content process using the IPDL
protocol must be sanitized by the b2g process because
the input given by a content process cannot be trusted.

Seccomp. Seccomp is a sandboxing mechanism
for the Linux kernel. It was first released in Linux
kernel 2.6.12 in March 8, 2005 [27]. It can change
the state of a process so that this process cannot
make any system calls (function to use a feature of
the kernel from a process in the user-space), except
exit(), sigreturn(), read() and write() to already-open
file descriptors.

An evolution of seccomp, Seccomp-bpf (or seccomp
mode filter) was released by Google with Linux kernel
3.5 [28]. Google Chrome 20 and above sandboxes
Adobe Flash Player with seccomp-bpf [30] and as of
Chrome 23, renderers processes are also sandboxed
[29].

BPF (Berkeley Packet Filter) filters are used with
Seccomp-bpf, these filters also exist in tcpdump for

#include <stdio.h>
#include <stdlib.h>
char tab[3] = {’A’, ’B’, ’C’};
char val = ’Z’;

int main() {
printf("Before overflow=%c\n", val);
tab[3] = ’D’;
printf("After overflow=%c\n", val);
return EXIT_SUCCESS;

}

Figure 16. buffer overflow.c

$ gcc buffer.c -o buffer
$./buffer
Before overflow=Z
After overflow=D

Figure 17. Buffer Overflow execution

example. It provides seccomp for a process the ability
to flexibly define allowed syscalls and the action to
take if the security policy is violated.

At the time of writing this paper, Guillaume
Destuynder has developped patch implementing
seccomp-bpf in gonk [31]. He had to backport
Seccomp-bpf to Linux Kernel 3.0 [32] because Firefox
OS currently runs on an Android’s kernel based on
Linux kernel 3.0.

Of course, this sandboxing has an impact on per-
formance, it is believed to increase the response time
up to 1% when a system call is made in the process
managed by seccomp-bpf.

3.3.2. Address Space Layout Randomization
(ASLR). A buffer overflow consists in overwrite data
in memory next to a buffer by exceeding the limit
of this buffer. Figure 16 and figure 3.3.2 provide an
example of a simple buffer overflow where the val
variable is stored in memory just after the tab table.
val value is overwritten by a buffer overflow of tab.

ASLR is a exploitation mitigation mechanism de-
signed to randomize memory space layouts used by
a program so that they are different for between
two execution of a program. Without that feature, an
attacker could predict addresses in the memory (e.g.
stack or heap) to exploit a buffer overflow overwriting
for example the return address of a function stored in
the stack by another address of his choosing, so maybe

let him run some malicious code.
As shown in the example in figure 18 on a Linux

Kernel with an amd64 architecture, the heap, the
dynamic linker and the stack addresses are randomized
because they vary from an execution to another.

Patches are available and working on the current
version of Gonk and Gecko but it’s basically a backport
of Android 4.1’s ASLR feature [33] using the PIE flag.
Mozilla seems to have decided to wait the migration
porting Gonk from Android 4.0 to Android 4.2 rather
than merging the current patches into the main code-
base.

3.3.3. Build flags hardening. It’s a good security
practice to review the security flags available for a
compiler, usually to make it more difficult to exploit
memory corruption vulnerabilities. Bionic is the stan-
dard C library used for Firefox OS (it’s also used in
Android). Mozilla’s engineers have created patches to
use hardened gcc and bionic flags [34].

RELRO (RELocation Read-Only) is another flag
used for exploit mitigation. A Linux binary (ELF)
using shared libraries has a look-up table called Global
Offset Table (GOT) which is used to resolve functions
available in these libraries. When such a function
is called, the call is first pointing to the Procedure
Linkage Table (PLT), stored in the .plt section of
the executable, see (1) in figure 20. This section has
instructions pointing to the GOT (here 0x400450),
stored in the .got.plt section (2). Without going into
further details (which are available at [36] and [37]),
without RELRO, the GOT and the PLT use mecha-
nisms making them weak against memory corruption:
the PLT is a known offset from the .text segment,
the memory is allocated at a known address and is
writable. So we just need to create an exploit to write
some data at the desired location, see figure 19. We
can see that this exploit works without RELRO but
is blocked if the flag is used figure 20. There are
also partial RELRO flags where only non-PLT GOT
is read-only but this is much less secure than the
flags we have just seen with a full RELRO mode.
Our demonstration provides the same result without
RELRO and with partial RELRO. To provide some
comparison, on a current Arch Linux x86 64 system,
systemd and chromium run in full RELRO modes,
most of the programs run in partial RELRO mode and
ruby and dropbox don’t use any RELRO flag.

-D FORTIFY SOURCE is another flag considered
for gcc. This feature detects a subset of buffer over-
flows and tries to automatically specify the buffer size
when the program is compiled.

Finally, the gcc Stack-Smashing Protector (SSP)

$ cat /proc/self/maps
00400000-0040b000 r-xp 00000000 fe:02 138177 /usr/bin/cat
0060a000-0060b000 r--p 0000a000 fe:02 138177 /usr/bin/cat
0060b000-0060c000 rw-p 0000b000 fe:02 138177 /usr/bin/cat
012b1000-012d2000 rw-p 00000000 00:00 0 [heap]
7f144b0fa000-7f144b29d000 r-xp 00000000 fe:02 134369 /usr/lib/libc-2.17.so
7f144b29d000-7f144b49d000 ---p 001a3000 fe:02 134369 /usr/lib/libc-2.17.so
7f144b49d000-7f144b4a1000 r--p 001a3000 fe:02 134369 /usr/lib/libc-2.17.so
7f144b4a1000-7f144b4a3000 rw-p 001a7000 fe:02 134369 /usr/lib/libc-2.17.so
7f144b4a3000-7f144b4a7000 rw-p 00000000 00:00 0
7f144b4a7000-7f144b4c8000 r-xp 00000000 fe:02 134376 /usr/lib/ld-2.17.so
7f144b697000-7f144b69a000 rw-p 00000000 00:00 0
7f144b6c8000-7f144b6c9000 r--p 00021000 fe:02 134376 /usr/lib/ld-2.17.so
7f144b6c9000-7f144b6ca000 rw-p 00022000 fe:02 134376 /usr/lib/ld-2.17.so
7f144b6ca000-7f144b6cb000 rw-p 00000000 00:00 0
7fff9c2e1000-7fff9c302000 rw-p 00000000 00:00 0 [stack]
[...]
$ cat /proc/self/maps
00400000-0040b000 r-xp 00000000 fe:02 138177 /usr/bin/cat
0060a000-0060b000 r--p 0000a000 fe:02 138177 /usr/bin/cat
0060b000-0060c000 rw-p 0000b000 fe:02 138177 /usr/bin/cat
0141d000-0143e000 rw-p 00000000 00:00 0 [heap]
7fb4ed9fe000-7fb4edba1000 r-xp 00000000 fe:02 134369 /usr/lib/libc-2.17.so
7fb4edba1000-7fb4edda1000 ---p 001a3000 fe:02 134369 /usr/lib/libc-2.17.so
7fb4edda1000-7fb4edda5000 r--p 001a3000 fe:02 134369 /usr/lib/libc-2.17.so
7fb4edda5000-7fb4edda7000 rw-p 001a7000 fe:02 134369 /usr/lib/libc-2.17.so
7fb4edda7000-7fb4eddab000 rw-p 00000000 00:00 0
7fb4eddab000-7fb4eddcc000 r-xp 00000000 fe:02 134376 /usr/lib/ld-2.17.so
7fb4edf9b000-7fb4edf9e000 rw-p 00000000 00:00 0
7fb4edfcc000-7fb4edfcd000 r--p 00021000 fe:02 134376 /usr/lib/ld-2.17.so
7fb4edfcd000-7fb4edfce000 rw-p 00022000 fe:02 134376 /usr/lib/ld-2.17.so
7fb4edfce000-7fb4edfcf000 rw-p 00000000 00:00 0
7fff0a408000-7fff0a429000 rw-p 00000000 00:00 0 [stack]
[...]

Figure 18. ASLR on Linux with an amd64 architecture

#include <stdio.h>

int main(int argc, char** argv) {
size_t *p = (size_t *)

strtol(argv[1], NULL, 16);
p[0] = (size_t)

strtol(argv[2], NULL, 16);
printf("RELRO: %p\n", p);
return 0;

}

Figure 19. relro.c

also known as ProPolice can be activated. It provides,
among other security features, a mechanism called ca-
naries. They are indicators just between local variables
and the return address of a function where a buffer may
be overflowed. If an attacker overflows a buffer, the
canary will be erased. Before calling the return address,
a check on the canary is done and if it was altered, the
program will end immediately before calling the return
address that may redirect to malicious code.

These patches need more performance tests to make
sure it doesn’t have a performance impact that is
too important for the users. To provide some context,
Ubuntu, a popular Linux distribution, provides ASLR.
This distribution also uses the immediate binding, -

$ # No RELNO
$ gcc relro.c -o relro_code
(1) $ objdump -M intel -d
relro | grep printf@plt
4005b4: [...] call 400410 <printf@plt>
(2) $ objdump -M intel -d
relro | grep 400410: -A 2
400410: [...] jmp [...] # 600988
<_GLOBAL_OFFSET_TABLE_+0x18>

400416: [...] push 0x0
40041b: [...] jmp 400400 <_init+0x20>
$ gdb -q ./relro
(gdb) x 0x600988
0x600988 <printf@got.plt>:
0x00400416
(gdb) r 0x600988 0x424242
Program received signal SIGSEGV,

Segmentation fault.
0x0000000000424242 in ?? ()
$ # With (full) RELRO
$ gcc -Wl,-z,relro,-z,now relro.c -o relro
(1) $ objdump -M intel -d
relro | grep printf@plt
4005f4: [...] call 400450 <printf@plt>
(2) $ objdump -M intel -d
relro | grep 400450: -A 2
400450: [...] jmp [...] # 600fd8
<_GLOBAL_OFFSET_TABLE_+0x18>

400456: [...] push 0x0
40045b: [...] jmp 400440 <_init+0x28>
$ gdb -q ./relro
(gdb) x 0x600fd8
0x600fd8 <printf@got.plt>:
0x00400456
(gdb) r 0x600fd8 0x424242
Program received signal SIGSEGV,

Segmentation fault.
0x00000000004005e0 in main ()

Figure 20. RELRO demonstration

D FORTIFY SOURCE=2 and (partial) RELRO flags
for all their packages.

3.3.4. File system. Firefox OS features a file sys-
tem hardening policy designed to prevent information
leaks, privilege escalation and execution of native code.
The main principle of the policy is to give read-write
rights only to areas with user content. This file system
hardening is based on Android.

#include <stdio.h>
#include <unistd.h>

int main(int argc, const char* argv[])
{
execv("/usr/bin/id", argv)
return 0;

}

Figure 21. setuid demo.c

$ su foo
$ gcc setuid_demo.c -o setuid_demo
$ chmod +s setuid_demo
$./setuid_demo
uid=45067(foo) gid=449(mygroup)
groups=449(mygroup)
$ su bar
$./setuid_demo
uid=45068(bar) gid=449(mygroup)
euid=45067(foo) groups=449(mygroup)

Figure 22. commands for a setuid demo

Unix permissions. Firefox OS uses the classic
Linux filesystem permission model which specifies
which user,group or others has access to a file to
read,write or execute it. The system ensures that
the user under which web application are executed
shouldn’t be able to write to any file in our system.
For new files, especially those created by content
processes, we want to make the sure the default
permissions follow this policy. Firefox OS make use
of umask for this.

The flags setuid (set user ID upon execution) and
setgid (set group ID upon execution) are also an attack
vector. When an executable file has this flag it is
executed with the permissions of the owner of the file.
For example, if a executable file is created with the
root user (so that the owner of this file is root) and
has the setuid flag it has unlimited permissions, see
figure 21 and figure 22. the setgid flag give the same
behavior but instead of working on users, it applies to
groups.

Mount points. A mount point is a physical
location in a partition that is used by a filesystem. Each
mount point has:

• a path describing where it is accessible in the
filesystem

• a file system type describing how data is stored,

retrieved or updated
• options usually giving features to specify data ac-

cess mechanism for performance but also security
features

The mount points chosen for Firefox OS are de-
scribed in table 1 [38]. We can see that writable mount
points have the nosuid option which does not allow set-
user-identifier or set-group-identifier bits to take effect
in these mount points. These mount points also have
the noexec option so that binaries cannot be executed.
So for example even if an attacker manages to copy an
malicious binary in the filesystem, they won’t be able
to execute it. More precautions were taken to mount
SD cards, uid=1000 specifies that only the root user
has access the files on the card. For this mount point,
default permissions for files and directory are set using
respectively the fmask and dmask options, only the
owner of a file or directory can write in it.

Since Firefox OS is an operating system, it needs
security hardening features to make it more difficult for
an attacker to exploit a security bug. Firefox OS uses
technologies that have been implemented for a long
time by other OS like ALSR or file system hardening.
An effort has been made on sandboxing although no
groundbreaking features have been created, it often
consists in backporting security features of Android
or porting Firefox’s features. Some interesting security
patches are available but not merged, maybe because
the project is currently more interested by performance
than advanced exploit mitigation techniques.

3.4. Security of Competitors’ Products

3.4.1. Android. Android is the most used mobile
operating system in Q1 2013. Popularity brings many
attackers. The main security layers of Android [39]
are very similar to those of Firefox OS: using the
Linux kernel for OS security, each application runs in
a sandbox, secure communication between processes,
application signing and permissions. The application
sandbox creates a user and a process for each app and
benefits from the user resources (such as processes and
files) protection of the Linux kernel. Whereas only
apps are sandboxed in Firefox OS, so are libraries
in Android, using the same mechanisms. The file
system hardening of Android is the same as b2g’s.
As for memory hardening Android seems a little more
advanced than Firefox OS, since Android 1.5 ProPolice
is used, NX (to prevent code execution on the stack
and heap) is available since Android 2.3, ASLR has
been implemented in Android 4.0 and improved in

Android 4.1. RELRO appeared in Android 4.1, FOR-
TIFY SOURCE has been activated since Android 4.2.

Full disk encryption using AES128 is available for
Android 3.0+, this feature is discussed for next b2g
versions [40].

Security vendors (Avast, Lookout, AVG, . . .) pro-
vide additional security such as antivirus, privacy set-
tings, etc.

A negative aspect of Android’s security is that on
most devices, you cannot upgrade Android’s version
due to hardware limitation, so you don’t have any
security improvement.

On the kernel level and for external dependencies
Firefox OS mostly use Android’s codebase. As a
consequence, the security level of these layers are the
same on the two platforms.

3.4.2. iOS. iOS has a lot of security features [41]
such as signed firmware files for the boot chain, code
signing, Data Execute Prevention (DEP), ASLR, Stack
Canaries, File system hardening and Sandboxing.

Despite all these security features, shortly after a
new iOS version is out, a jailbreak, a program to
gain full control of its device, is released. Malware
is limited on this platform compared to Android, most
of them are related to memory corruption. It is thought
to be thanks to Apple Store’s restrictions. Reviewers
take more time to do their job, verify publishers’ real-
world identities and don’t hesitate to refuse apps or ban
attackers who submit malicious apps. iOS also have a
reduced attack surface because it doesn’t include a lot
of external software: No flash, no Java, limited PDF
viewer, no shell.

3.4.3. Blackberry. RIM has made security one if
its main marketing arguments. Blackberry smartphones
are known to make heavy use of cryptography using
the AES algorithm. Blackberry runs in a QNX kernel
[42] which give a process manager to each process
making sure it doesn’t try to write or access a memory
address it’s not supposed to. Blackberry 10 include
external dependencies such as Flash or WebKit. A
particularity of Blackberry is that RIM sells Blackberry
Enterprise Server, a software solution for companies
used to centrally configure and control a fleet of
blackberry smartphones. This solution is a great tool to
ensure security compliance of all the smartphones in
the company and push configurations that will greatly
reduce the attack surface. In May 2013, after a rigorous
security review, Blackberry 10 has been the first mobile
platform approved by the U.S. Department of Defense
for future agency use [43].

Compared to the 3 most popular mobile operating
systems, Firefox OS appears close to Android (but
behind), from which it takes many security ideas
although this system is definitely the most secure.
Currently Android, iOS and Blackberry have more
advanced security features but all these systems share
similar security guidelines. Security has now become a
major argument for selling smartphones to companies.
iOS and Blackberry currently have better reputation on
this topic.

4. Conclusion

It appears that Firefox OS has suffered some delay
but most of the basic and most crucial security features
are ready. From a general point of view, Firefox OS
currently provides far less features for users than other
mobile operation systems. The tools to develop great
applications are however already here. An interesting
point is that because Firefox OS has been created
when some people have seen the consequences of poor
security on smartphones, Mozilla has adopted from the
start a security aware architecture. Maybe it’ll make
developing interesting security features easier in the
future. What may be the most important in the security
model of Firefox OS is that it’s designed for a new
kind of applications, which are developed using web
technologies (HTML5, javascript) and may magnify
the impact of web attacks since web apps while be
running not only a browser but also directly in an
OS. We were not able to find an independent security
research paper about Firefox OS yet but it’ll probably
be a hot topic in next security conferences.

Acknowledgment

The authors would like to thank Joaquin Garcia-
Alfaro for tutoring the redaction of this paper.

References

[1] B2G/Architecture on Mozilla’s Wiki
https://wiki.mozilla.org/B2G/Architecture as
of 06-02-2013

[2] Firefox OS architecture on Mozilla Developer
Network https://developer.mozilla.org/en-
US/docs/Mozilla/Firefox OS/Platform/Architecture
as of 06-02-2013

[3] Gaia overview on Google Drive
https://docs.google.com/document/d/
1Q6VZAN4GI
3zUe1oILrsAlTR6ODUnF2xjpHq5LrNAdk as of

06-02-2013

[4] Announcing Boot to Gecko (B2G) Booting to
the Web on July 27, 2011 by Robert Nyman.
https://hacks.mozilla.org/2011/07/announcing-
boot-to-gecko-b2g-booting-to-the-web/ as of
05-05-2013

[5] Telefónica and Mozilla pioneer first Open
Web Devices on 27 February 2012.
http://saladeprensa.telefonica.com/documentos/nprensa/
OpenWebDevice Eng DEF.pdf as of 05-05-2013

Mount point File system Options
/ rootfs read-only

/dev tmpfs read-write, nosuid, noexec, mode=0755

/dev/pts ptsfs read-write, nosuid, noexec, mode=0600

/proc proc read-write, nosuid, nodev, noexec

/sys sysfs read-write, nosuid, nodev, noexec

/cache yaffs2 or ext4 read-write, nosuid, nodev, noexec

/efs yaffs2 or ext4 read-write, nosuid, nodev, noexec

/system ext4 read-only, nodev

/data ext4 read-write, nosuid, nodev, noexec

/mnt/sdcard ext4 or vfat read-write, nosuid, nodev, noexec, uid=1000, fmask=0702, dmask=0702

/acct cgroup read-write, nosuid, nodev, noexec

/dev/cpuctl cgroup read-write, nosuid, nodev, noexec

Table 1. Filesystem Mounts

[6] Mozilla Gains Global Support For
a Firefox Mobile OS, 07-02-2012
https://blog.mozilla.org/blog/2012/07/02/firefox-
mobile-os/ as of 05-07-2013

[7] Announcing the prototype Firefox OS Simulator
on November 15, 2012 by Kevin Dangoor
https://hacks.mozilla.org/2012/11/announcing-the-
prototype-firefox-os-simulator/ as of 05-08-2013

[8] Release Management/B2G
Landing on Mozilla’s Wiki
https://wiki.mozilla.org/Release Management/B2G
Landing as of 06-09-2013

[9] Mozilla Announces Global Expan-
sion for Firefox OS, 02-24-2013
https://blog.mozilla.org/press/2013/02/firefox-
os-expansion/ as of 05-08-2013

[10] B2G FTP mirror
http://ftp.mozilla.org/pub/mozilla.org/b2g/manifests/
as of 05-14-2013

[11] Introducing navigator.mozPay() For Web Pay-
ments on April 4, 2013 by Kumar McMil-
lan https://hacks.mozilla.org/2013/04/introducing-
navigator-mozpay-for-web-payments/ as of 05-18-
2013

[12] Firefox OS Simulator 3.0 released on May
2, 2013 by Robert Nyman [Editor] and Myk
Melez https://hacks.mozilla.org/2013/05/firefox-
os-simulator-3-0-released/ as of 05-18-2013

[13] Foxconn Adopts Firefox OS, 06-03-2013.
https://blog.mozilla.org/press/2013/06/foxconn-
adopts-firefox-os/ as of 05-20-2013

[14] Mozilla B2G on Galaxy SII review
on YouTube, 29 February 2013
http://www.youtube.com/watch?v=TaujwbpbLk0
as of 06-09-2013

[15] Mozilla reveals Firefox smartphone launch
partners on BBC News, 24 February 2013
http://www.bbc.co.uk/news/technology-21522713
as of 06-09-2013

[16] Alcatel One Touch Fire joins the
Firefox OS cuddle party, we go hands-on
(video) By Richard Lai, Feb 24th, 2013
http://www.engadget.com/2013/02/24/alcatel-
one-touch-fire/ as of 06-09-2013

[17] ZTE Open, the company’s first Firefox
OS phone, gets a spec sheet at MWC
By Richard Lai, Feb 23rd, 2013
http://www.engadget.com/2013/02/23/zte-open-
firefox-os-mwc-leak/ as of 06-09-2013

[18] Firefox Security Guidelines on Mozilla De-
veloper Network https://developer.mozilla.org/en-
US/docs/Security/Firefox Security Guidelines as
of 06-09-2013

[19] Secure Coding Principles on OWASP
https://www.owasp.org/index.php/Secure Coding Principles
as of 06-09-2013

[20] Security Review, University of California, Santa
Cruz http://its.ucsc.edu/itsm/securityrev.html as of
06-09-2013

[21] Developing secure Firefox OS applications on
Google docs https://docs.google.com/document/d/
1DLs1jhTMxN5fh2PSb O7FDaSadjjAW-
MlK1xCBRWGmM as of 06-09-2013

[22] IPC Protocol Definition Language
(IPDL) on Mozilla Developer Network.
https://developer.mozilla.org/en-US/docs/IPDL
as of 06-03-2013

[23] Bug 761935 - (nested-processes)
Tracking: Support nested content processes
https://bugzilla.mozilla.org/show bug.cgi?id=761935
as of 06-07-2013

[24] Bug 797477 - Enable loading certificates
and MAR verification in updater code for B2G
https://bugzilla.mozilla.org/show bug.cgi?id=797477
as of 06-06-2013

[25] Marketplace review criteria on Mozilla Developer
Network https://developer.mozilla.org/en-
US/docs/Web/Apps/Publishing/Marketplace review criteria
as of 06-07-2013

[26] A Secure Environment for Untrusted
Helper Applications (Confining the Wily
Hacker), Ian Goldberg et al., Proceedings
of the Sixth USENIX UNIX Security
Symposium, San Jose, CA, July 1996.
http://static.usenix.org/publications/library/proceedings/sec96/
full papers/goldberg/goldberg.pdf as of 05-25-
2013

[27] [PATCH] seccomp: secure computing support
by Andrea Arcangeli on 2005-03-08 01:54:43
http://git.kernel.org/cgit/linux/kernel/git/tglx/history.git/
commit/?id=d949d0ec9c601f2b148bed3cdb5f87c052968554
as of 05-26-2013

[28] Using simple seccomp filters
http://outflux.net/teach-seccomp/ as of 06-03-
2013

[29] A safer playground for your Linux and
Chrome OS renderers on Monday, Novem-
ber 19, 2012 http://blog.chromium.org/2012/11/a-
safer-playground-for-your-linux-and.html as of 06-
01-2013

[30] Chrome 20 on Linux and Flash
sandboxing on Wednesday, July 4, 2012
http://scarybeastsecurity.blogspot.de/2012/07/chrome-
20-on-linux-and-flash-sandboxing.html as of
06-02-2013

[31] Bug 790923 - (b2g-seccomp) Content
process sandboxing via seccomp filter,
patch provided by Guillaume Destuynder
https://bugzilla.mozilla.org/show bug.cgi?id=790923
as of 05-26-2013

[32] Seccomp-bpf for Samsung Crespo’s
Android kernel on Github (source
code) https://github.com/gdestuynder/
android kernel samsung crespo as of 06-02-
2013

[33] Bug 777948 - (ASLR-b2g) Consider
implementing address space layout
randomization (ASLR) for B2G
https://bugzilla.mozilla.org/show bug.cgi?id=777948
as of 05-27-2013

[34] Bug 620058 - use hardened gcc build flags
https://bugzilla.mozilla.org/show bug.cgi?id=620058
as of 06-02-2013

[35] Security Features on Ubuntu Wiki
https://wiki.ubuntu.com/Security/Features as
of 06-06-2013

[36] RELRO: RELocation Read-Only from NYU
Poly ISIS Lab on June 1, 2011 by Julian
Cohen https://isisblogs.poly.edu/2011/06/01/relro-
relocation-read-only/ as of 06-01-2013

[37] RELRO - A (not so well known) Memory
Corruption Mitigation Technique by Tobias
Klein on February 21, 2009 http://tk-
blog.blogspot.fr/2009/02/relro-not-so-well-known-
memory.html as of 06-01-2013

[38] System security of Firefox OS on Mozilla De-
veloper Network https://developer.mozilla.org/en-
US/docs/Mozilla/Firefox OS/Security/System security
as of 06-05-2013

[39] Android Security Overview
https://source.android.com/tech/security/ as of
06-08-2013

[40] Bug 777917 - Consider implementing
Full Disk Encryption (FDE) for B2G
https://bugzilla.mozilla.org/show bug.cgi?id=777917
as of 06-08-2013

[41] iOS Security, October 2012
http://images.apple.com/iphone/business/docs/
iOS Security Oct12.pdf as of 06-09-2013

[42] Blackberry Z10 Reasearch Primer, Dissecting
Blackberry 10 – An initial analysis v1.0, by
Alexander Antukh, SEC Consult Vulnerability
Lab, Vienna, 05/2013 https://www.sec-
consult.com/fxdata/seccons/prod/downloads/
sec consult vulnerability lab blackberry z10
initial analysis v10.pdf as of 06-09-2013

[43] BlackBerry 10 wins Pentagon’s security
approval http://news.cnet.com/8301-1035 3-
57582683-94/blackberry-10-wins-pentagons-
security-approval/ as of 06-09-2013

	General overview of Firefos OS
	Gonk
	Booting
	mediaserver
	rild
	b2g
	supervisor

	Gecko
	Gaia
	Applications
	App manifest

	History
	Hardware requirements

	Security Guidelines
	Security Reviews
	Outreach

	Security Implementation
	User Side
	Permissions
	Privacy

	Apps Security
	Permissions
	Web APIs
	b2g process
	Content process
	System updates
	App signing
	App validation

	Security Architecture
	Sandboxing
	Address Space Layout Randomization (ASLR)
	Build flags hardening
	File system

	Security of Competitors' Products
	Android
	iOS
	Blackberry

	Conclusion
	References

